Assume that sugar dissolves at a rate proportional to the undissolved amount. If there are initially 525 g of sugar and 225 remain after 4.00 min , how long does it take to dissolve $37 \mathrm{~s}^{\mathrm{g}} \mathrm{g}$?
let $A=$ undissolved amount

$$
\begin{aligned}
\frac{d A}{d t} & =k A \\
\int \frac{d A}{A} & =\int k d t \\
\ln A & =k t+C \\
A & =e^{k t+c}=e^{k t} e^{c}=c \cdot e^{k t}
\end{aligned}
$$

at $t=0, A=525$

$$
525=c_{1} e^{k 6} \quad \text { so } \quad c_{1}=525
$$

at $t=4, A=225$

$$
\begin{aligned}
225 & =525 e^{k \cdot 4} \\
\frac{225}{525} & =e^{4 k} \\
\ln 225 & =4 k
\end{aligned}
$$

$$
\begin{aligned}
525 & =\frac{1}{4} \ln \left(\frac{225}{525}\right)
\end{aligned}
$$

when $t=$?, how long does it take to dissolve 375 g ?

$$
\begin{aligned}
\text { dissolved } & =3759 \\
\text { mali solved } & =525-375 \\
& =150
\end{aligned}
$$

$$
\begin{aligned}
A & =525 e^{k t} \\
150 & =525 e^{k t} \\
\frac{150}{525} & =e^{k t} \\
\ln \left(\frac{150}{525}\right) & =k t \\
t & =\frac{\ln \left(\frac{150}{525}\right)}{k}=\frac{\ln \left(\frac{150}{525}\right)}{1 / 4 \ln \left(\frac{225}{525}\right)} \\
& =5.91416 \mathrm{~min} \\
& =5.9 \mathrm{~min}
\end{aligned}
$$

Find the volume in the first octant that is under the surface $z=4-x^{2}-y^{2}$ and is between the parabics $x^{2}=3 y$ and the plane $y=1$.
hint:

$$
\begin{aligned}
& x^{2}=3 y \\
& x^{2}=3 \\
& x=\sqrt{3}
\end{aligned} \text { when } y=1
$$

$$
\begin{aligned}
& V=\int_{V} 2 d x d y \quad(\operatorname{cr} d y d x) \\
& 0 \leq x \leq \sqrt{3} \\
& x^{2} / 3 \leq y \leq 1
\end{aligned} \quad \in \text { outside }
$$

