Section 31.7/8: contd
Tuesday, February 28, 2017 2:06 PM

Mini Quiz 6 will be on Friday
section 31.7/8:

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

I will give you:

$$
\begin{aligned}
& y=c_{1} e^{m \cdot x}+c_{2} e^{m_{2} x} \\
& y=\left(c_{1}+c_{2} x\right) e^{m x} \\
& y=e^{a x}\left(c_{1} \cos b x+c_{2} \sin b x\right)
\end{aligned}
$$

I will not give the quadratic formula.
note: there will be a thtaicl on Thursday in CBA 101

Test \#3 an Friday, March 17
-covers $31.7-31.10$ and statistics Section 142

- there will be a formula sheet, which I will give at and post to the web once it is finalized
(note: tentative date fo Test 4 is Friday, April 7)
example: solve:
a) $y^{\prime \prime}-8 y^{\prime}+16 y=0$
b) $y^{\prime \prime}-10 y^{\prime}+16 y=0$
c) $y^{\prime \prime}-2 y^{\prime}+s_{y}=0$
a)

$$
\begin{aligned}
& m^{2}-8 m+16=0 \\
& (m-4)(m-4)=0
\end{aligned}
$$

$m=4$ one repeated real root

$$
y=\left(c_{1}+c_{2} x\right) e^{4 x}
$$

b)

$$
\begin{aligned}
m^{2}-10 m+16 & =0 \\
(m-2)(m-8) & =0 \\
m & =2.8 \\
y & =C_{1} e^{2 x}+c_{2} e^{8 x}
\end{aligned}
$$

c)

$$
\begin{aligned}
m^{2}-2 m+5 & =0 \\
m & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{2 \pm \sqrt{4-20}}{2} \\
& =\frac{2 \pm \sqrt{-16}}{2} \\
& =\frac{2 \pm 4 i}{2} \\
& =1 \pm 2 i \\
& =a \pm b i \\
y & =e^{a x}\left(c, \cos b x+c_{2} \sin b x\right) \\
& =e^{x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)
\end{aligned}
$$

