solve: $\quad y^{\prime \prime}-y^{\prime}-6 y=4 x$
complementary

$$
\begin{aligned}
& m^{2}-m-6=0 \\
&(m-3)(m+2)=0 \\
& m=3-2 \\
& y_{c}=c_{1} e^{3 x}+c_{2} e^{-2 x}
\end{aligned}
$$

particular:

$$
\begin{aligned}
\text { RHS } & =4 x \\
y_{p} & =A x+B \\
y_{p^{\prime}} & =A \\
y_{1} & =0
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime \prime}-y^{\prime}-6 y=4 x \\
& 0-A-6(A x+B)=4 x \\
& -A-6 A x-6 B=4 x \\
& (-6 A) x+(-A-6 B)=4 x+0 \\
& 50-6 A=4 \quad \text { and } \quad-A-6 B=0 \\
& A=-2 / 3 \quad+2 / 3-6 B=0 \\
& 6 B=2 / 3 \\
& B=1 / 9 \\
& y_{p}=-\frac{2}{3} x+\frac{1}{9}
\end{aligned}
$$

full solution: $\quad y=y_{c}+y_{p}$

$$
=c_{1} e^{3 x}+c_{2} e^{-2 x}-\frac{2}{3} x+1 / 9
$$

Solve: $\quad y^{\prime \prime}+4 y^{\prime}+3 y=2+e^{x}$
complementary solution:

$$
\begin{gathered}
m^{2}+4 m+3=0 \\
(m+1)(m+3)=0 \\
m=-1,-3 \\
y_{c}=c_{1} e^{-x}+c_{2} e^{-3 x}
\end{gathered}
$$

particular solution: \quad RHO $=2+e^{x}$

$$
\begin{aligned}
& y_{p}=A+B e^{x} \\
& y_{p^{\prime}}=B e^{x} \\
& y_{p}=B e^{x} \\
& y^{\prime \prime}+4 y^{\prime}+3 y=2+e^{x} \\
& B e^{x}+4 B e^{x}+3\left(A+B e^{x}\right)=2+e^{x} \\
& 3 A+8 B e^{x}=2+e^{x}
\end{aligned}
$$

so $\quad 3 A=2 \quad$ and $\quad 8 B=1$

$$
A=2 / 3
$$

$$
B=1 / 8
$$

$$
y_{p}=\frac{2}{3}+\frac{1}{8} e^{x}
$$

full: $\quad y=y_{c}+y_{p}=c_{1} e^{-x}+c_{2} e^{-3 x}+\frac{2}{3}+\frac{1}{8} e^{x}$

$$
y^{\prime \prime}-y=e^{-x}
$$

complementary solution:

$$
\begin{aligned}
m^{2}-1 & =0 \\
m & =\neq 1 \\
y_{c} & =c_{1} e^{x}+c_{2} e^{-x}
\end{aligned}
$$

particular solution.

$$
\begin{aligned}
\text { RIF } & =e^{-x} \quad \text { BAD CASE. } \\
y_{p} & =A x e^{-x}
\end{aligned}
$$

So $y_{p}=A \times e^{-x}$

$$
\begin{aligned}
y_{p}^{\prime} & =A e^{-x}+-A x e^{-x} \\
y_{p}^{\prime \prime} & =-A e^{-x}-A e^{-x} \\
& =-2 A e^{-x}+A x e^{-x}+A x e^{-x}
\end{aligned}
$$

sub in:

$$
\begin{aligned}
y^{\prime \prime}-y & =e^{-x} \\
-\partial A e^{-x}+A / \sqrt{-x}-A / e^{-x} & =e^{-x} \\
-2 A e^{-x} & =e^{-x} \\
\text { so }-2 A & =1 \\
A & =-1 / 2 \\
y_{p} & =-\frac{1}{2} \times e^{-x}
\end{aligned}
$$

full:

$$
\begin{aligned}
y & =y_{c}+y_{p} \\
& =c_{1} e^{x}+c_{2} e^{-x}-1 / 2 x e^{-x}
\end{aligned}
$$

Solve

$$
y^{\prime \prime}-2 y^{\prime}+y=3 \sin x
$$

complementery:

$$
\begin{aligned}
& m^{2}-2 m+1=0 \\
&(m-1)^{2}=0 \\
& m=1 \\
& \quad \text { (reperted rod) } \\
& y_{c}=\left(c_{1}+c_{2} x\right) e^{x}
\end{aligned}
$$

paticular: \quad RHS $=3 \sin x$

$$
\begin{aligned}
& y_{p}=A \sin x+B \cos x \\
& y_{p}{ }^{\prime}=A \cos x-B \sin x \\
& y_{p}^{\prime \prime}=-A \sin x-B \cos x \\
& y^{\prime \prime}-2 y^{\prime}+y=3 \sin x \\
&(-A \sin x-B \cos x)-2(A \cos x-B \sin x)+(A \sin x+B \cos x) \\
&-2 A \cos x+2 B \sin x=3 \sin x \\
& \text { so }-2 A=0 \quad \sin \alpha \quad 2 B=3 \\
& A=0 \quad B=3 / 2 \\
& y_{p}=3 / 2 \cos x
\end{aligned}
$$

full: $\quad y=y_{c}+y_{e}=\left(c_{1}+c_{2} x\right) e^{x}+3 / 2 \cos x$

