Section 3: cont'd
(2) Project 1 has 35% chance of eorniy $\$ 0$
so

$$
1502
$$

Project 2 has 60%

$$
4000
$$

a) probability distributions of earnings:

Project 1

x	$p(x)$
0	0.35
300000	0.5
800000	0.15

Prgect 2

x	$p(x)$
0	0.6
$1,000,000$	0.4

b) expected earnings:

$$
\begin{aligned}
\mu_{1} & =\sum x p(x) \\
& =0(0.35)+300,000(0.5)+800,000(0.15) \\
& =\$ 270,000 \\
\mu_{2} & =0(0.6)+1000000(0.4)=\$ 400,000
\end{aligned}
$$

C) Std dew of earnings fo each project

$$
\begin{aligned}
\sigma_{1}^{2} & =\sum x^{2} p(x)-\mu^{2} \\
& =0(0.35)+300000^{2}(0.5)+800000^{2}(0.15)-(270000)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =6.81 \times 10^{10} \\
\sigma_{1} & =\sqrt{\sigma_{1}^{2}}=\$ 261,000 \\
\sigma_{2}^{2} & =0(0.6)+1000000^{2}(0.4)-400000^{2} \\
& =2.4 \times 10^{11} \\
\sigma_{2} & =\sqrt{\sigma_{2}^{2}}=\$ 490,000
\end{aligned}
$$

d) Which prgect has higher expected earnings?

Project 2 has higher expected earnings

$$
\mu_{2}>\mu_{1}
$$

e) which project is riskier?

Project 2 is riskier since $\sigma_{2}>\sigma_{1}$
(3) you have $\$ 2000$ tablet

$$
\rho(\text { theft })=4.78
$$

premium m
a) probability distribution of insurance company gain
$\left.\begin{array}{cc|c} & x & \rho(x) \\ \text { no theft } \\ \text { theft }\end{array} \quad m \begin{array}{l}m-2000\end{array}\right]$
b) find m if expected gain by compony is $\$ 40$

$$
\begin{aligned}
\mu=E(x) & =\sum x \rho(x) \\
& =m(0.953)+(m-2000)(0.057) \\
& =0.953 m+0.047 m-94 \\
40 & =m-94 \\
m & =\$ 134
\end{aligned}
$$

