Section 4: Binomial and
Wednesday, March 22,2017 1:46 PM Poisson Distributions
definition: a combination is an unordered selection of r objects chosen from n objects
nate: this selection is dane without replacement - once an object has bean picked, it cunt be chosen again
example: poker hands - you ore dealt five cords
notation:
${ }_{n} C_{r}=$ number of ways to choose the r objects from n

$$
{ }_{n} C_{r}=\frac{n!}{r!(n-r)!}
$$

$$
\begin{aligned}
& 3!=3 \cdot 2 \cdot 1 \\
& 4!=4 \cdot 3 \cdot 2 \cdot 1 \\
& n!=n \cdot(n-1) \cdot(n-2) \cdots 3 \cdot 2 \cdot 1
\end{aligned}
$$

so ${ }_{5} C_{3}=5$ n er $3=10$

$$
=\frac{5!}{3!2!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2+2 \cdot 1}=10
$$

handout:
(1) 4 objects $A B C D$ haw many ways to choose 2 of the objects? method H1: sample space

$A B$	$B C$	$C D$
$A C$	$B D$	
$A D$		

so 6
$\operatorname{method} \# 2=$

$$
{ }_{4} C_{2}=6
$$

(2) a) ${ }_{12} C_{7}=792$
b) $\quad{ }_{45} \mathrm{C}_{4}: 148,995$
binomial distribution:
let $x=$ the number of successes in n identical success/fcilure trials
then

$$
P(x=k)={ }_{n} C_{k} \rho^{k} q^{n-k}
$$

where $n=\#$ of trials
$\rho=$ probability of success in one trial
$q=$ probability of failure $(=1-p)$
example. Ya have an unfair coin, which has a 60% chance of coming up heads. what is the probability of getting all heads in 3 coin flips?

$$
\begin{aligned}
& n=3 \\
& p=0.6 \\
& q=0.4
\end{aligned}
$$

$$
k \text { : number of successes }=3
$$

$$
\begin{aligned}
P(x: k) & ={ }_{n} C_{k} \cdot p^{k} q^{n-k} \\
& ={ }_{3} C_{3}(0.6)^{3}(0.4)^{3-3} \\
& =0.216 \quad \text { or } 21.6 \Omega
\end{aligned}
$$

