example: A company insures students' belongings against theft. If the belongings ae stolen (probability of the ft is 0.5%), the company will pay art $\$ 5000$.
a) What premium shall the company charge if they wont to make \$100 per student?
b) What is the stenderd deviation of the company's earnings fee student?

$$
\begin{aligned}
& x \\
& \begin{array}{c}
\text { notheft } \\
\text { theft }
\end{array} \begin{array}{c}
x \\
m-5000
\end{array} \\
& \hline 0.005 \\
& \mu=E(x)=\sum x \rho(x) \\
& 100=0.995 \mathrm{~m}+0.005(m-5000) \\
&=\$ \mathrm{~m}-25 \\
& m=\$ 125
\end{aligned}
$$

b)

$$
\begin{aligned}
\sigma^{2} & =\sum x^{2} \rho(x)-\mu^{2} \\
& =(125)^{2}(0.995)+(125-5000)^{2} 0.005-100^{2} \\
& =124375 \\
\sigma & =352.668
\end{aligned}
$$

Thrifty's is considering opening a new stare in Saanich. Their statistician thinks that the probability that the store will make $\$ 150000$ per month is 600 , while the probability that they ll make \$ 75000 per month is 400 . Thrifty's will only open the stare if their expected earnings ore greater than \#125,000 per month. shall they open the stare?

x	$\rho(x)$
150000	0.6
75000	0.4

$$
\begin{aligned}
N=E(x) & =\sum x P(x) \\
& =150000(0.6)+75000(0.4) \\
& =120000
\end{aligned}
$$

