Section 4: cont'd
we will be omitting the hypergeometric distribution lecture notes/handout:
amid questions 6-10
I will email the arestions from the statistics exercises that you should omit
note: if you have 7 marbles in a bag and you draw two of them at - withal replacement, what does it look like if there were 2 red and 5 yell m to begin with?

- nat binomial
if the first one is yellow (5/7 prob). the probability, that the second is yell as is $(4 / 6=2 / 3)$. NOT THE SAME!

Poisson distribution

Poisson distribution

- good model for data that represent the number of ocewances of a specified event in a given wit of time or space
examples - number of car accidents at a particular intersection during a given period of time
- number of people standing at a certain street corner at a given time
- number of pieces of litter in a given area of park at a certain time
then $x=$ number of events accusing in the period of time or space
and $\mu=$ average number of such events expected to occur
and

$$
\begin{aligned}
P(x=k)= & \frac{\mu^{k} e^{-\mu}}{k!} \\
& k!=k(k-1)(k-2) \cdots 3 \cdot 2 \cdot 1
\end{aligned}
$$

note: K has no max value
\rightarrow unbounded
(11) website receives on average 7 visits per how
\rightarrow find the probability that there are less than a visits in the next how

Poisson $\quad \mu=7$

$$
\begin{aligned}
P(x=k) & =\frac{\mu^{k} e^{-N}}{k!} \\
P(x<2) & =P(0)+P(1) \\
& =\frac{7^{0} e^{-7}}{0!}+\frac{7^{1} e^{-7}}{1!} \\
& =0.007295 \\
& o r=0.7 \Omega
\end{aligned}
$$

(12) average number of cracks in concrete is 1.9 find $P(2 \propto 3)$
find P (at least 1)
a)

$$
\begin{aligned}
P(2 \propto 3) & =P(x=2)+P(x=3) \\
& =19^{2},-1.9 \quad 15^{3},-1.9
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1.9^{2} e^{-1.9}}{2!}+\frac{1.9^{3} e^{-1.9}}{3!} \\
& =0.440953 \\
& =0.44 \text { or } 440
\end{aligned}
$$

b)

$$
\begin{aligned}
P(x=0) & =\frac{1.9^{0} e^{-1.9}}{0!} \\
P(x \geq 1) & =1-P(x=0) \\
& =0.8550431 \\
& =0.85 \text { or } 850
\end{aligned}
$$

summary:
(1) binomial - n identical trials

- 2 possible attcomes
- probability does not charge from trial to trial
(2) hypegromatric
(3) Poisson: number of occurences of a specific event in given time or space

