Tutorial:

On star Trek voyager, the odds of crash.j the shut te on any away mission appear to be 7508. If these crashes are independent, whet are the odds of
a) exactly for crashes in five shuthe missing?
b) at least for
binomial:
a)

$$
\begin{aligned}
P(x=4) & ={ }_{5} C_{4}(0.75)^{4}(0.25)^{\prime} \\
& =0.355508
\end{aligned}
$$

b)

$$
\begin{aligned}
P(x=5) & =0.2373 \\
P(x \geq 4) & =P(x=4)+P(x=5) \\
& =0.63 \text { or } 63 \%
\end{aligned}
$$

consider the probability distribution belau. Complete the table and then calculate the mean and standard deviation of x.

x	$p(x)$
0	$1 / 10$
1	$6 / 10$

$\overline{1}$	$6 / 10$	
2	$3 / 10$	\leftarrow why? sum of probs

$$
\begin{aligned}
E(x) & =\sum x \rho(x) \\
& =0+1 \cdot \frac{6}{10}+2 \cdot 3 / 10 \\
& =1.2 \\
\sigma^{2} & =\sum x^{2} \rho(x)-N^{2} \\
& =0+1^{2} \cdot \frac{6}{10}+2^{2} \cdot \frac{3}{10}-(1.2)^{2} \\
& =0.36
\end{aligned}
$$

$$
\sigma: 0.6
$$

suppose that a randan variable has the folloung probability density:

$$
f(x)= \begin{cases}s e^{-5 x} & \text { for } \quad x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

a) Calculate the probability that x will be between 1 and 3
b) Calculate the probability that x will be less than 0.5
c) Calculate the probability that x will be greater then (hint: use answer to (b))
a)

$$
\begin{aligned}
P(1<x<3) & =\int_{1}^{3} 5 e^{-5 x} d x \\
& =-\left.e^{-5 x}\right|_{1} ^{3} \\
& =-e^{-15}+e^{-5} \\
& \approx 0.006738 \quad \text { or } 0.6708
\end{aligned}
$$

b)

$$
\begin{aligned}
P(0<x<0.5) & =\int_{0}^{0.5} 5 e^{-5 x} d x \\
& =-\left.e^{-5 x}\right|_{0} ^{0.5} \\
& =-e^{-2.5}+e^{0} \\
& \approx 0.917915 \quad \approx 920
\end{aligned}
$$

c)

$$
\begin{aligned}
P(x>0.5) & =1-P(x<0.5) \\
& =8 d
\end{aligned}
$$

