Math 193 - Test 3: Version A

March 12, 2018
Name: Solution Set
Instructor: Patricia Wrean
Total: 25 points

1. (3 points) There are 30 players on the Vancouver Whitecaps team. The top two player salaries are $\$ 1,400,000$, and $\$ 725,000$.

What would happen to the mean, median and standard deviation of the player salaries if the highest paid player's salary was decreased to $\$ 1,000,000$? Circle the correct answer.

2. (5 points) An experiment consists of flipping a coin and then rolling a fair six-sided die.
(a) How many possible outcomes does this experiment have?
method \#1:

method \#2:

sample space:

$T 1 T 2$ TB TH TS Tb
(b) What is the probability that the coin toss is TAILS and the die roll is a 5 ?
$11=1$ out came
$P(E)=\frac{n(E)}{n(S)}$
$P(T S)=\frac{1}{12}=8 . \overline{3} \Omega$

(c) What is the probability that the coin toss is TAILS or the die roll is a 5 ?
$P(T)=\frac{1}{2}$
$P(5)=1 / 6$
$P(T 5)=1 / 12$
$P(T \propto S)=P(T)+P(S)-P(T S)$
$=\frac{1}{2}+1 / 6-1 / 12$
$=\frac{7}{12}=58.3 \Omega$

$$
P(\operatorname{Tor} 5)=\frac{7}{12}
$$

3. (3 points) A recent study revealed that 80% of all fish in sold in BC is mislabelled. Suppose you are planning to buy fish 6 times next month. What is the probability that at least one of those six purchases is correctly labelled?
let $X=$ number of fish correctly labelled
(1) binomial with $n=6$ and $\rho=0.2$ (so $q=0.8$)

$$
\rho(x)={ }_{n} C_{x} \rho^{x} q^{n-x}
$$

(1) $P(0)={ }_{6} C_{0}(0.2)^{0}(0.8)^{6} \approx 0.262144$
(1) $\begin{aligned} P(x>0)=1-P(0) & \approx 0.737 \\ & \approx 7480\end{aligned}$
4. (3 points) On a particular river, overflow floods occur once every 100 years on average. Calculate the probability that in the next 100 years there will be
(a) exactly one flood
let $x=$ number of f foods in 100 years Poisson with $\mu=1$

$$
\begin{align*}
& f(x)=\frac{\lambda^{x} e^{-\lambda}}{x!} \\
& f(1)=\frac{1^{1} e^{-1}}{1!}=e^{-1} \approx 0.367879 \tag{1}\\
& \approx 3786
\end{align*}
$$

(b) no floods

$$
P(0)=\frac{1^{0} e^{-1}}{0!}=e^{-1}=\text { same as abare }
$$

5. (5 points) In a certain city, the time it takes in hours to repair a square of sidewalk is a continuous random variable with probability density function

$$
f(x)= \begin{cases}30\left(x^{4}-x^{5}\right) & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the probability that it takes exactly half an hour to repair a sidewalk square.

$$
\rho(x=0.5)=0
$$

the probability of any single continuous random variable is exactly zero
(b) Find the probability that it takes at least half an hour to repair a sidewalk square.

$$
\begin{aligned}
P(a<x<b)= & \int_{a}^{b} f(x) d x \\
P(0.5<x<1) & =\int_{0.5}^{1} 30\left(x^{4}-x^{5}\right) d x \\
& =\left.\left(\frac{30}{5} x^{5}-\frac{30}{6} x^{6}\right)\right|_{0.5} ^{1} \\
& =\frac{57}{64} \approx 0.890625 \approx 8986
\end{aligned}
$$

(c) On average, how long does it take to repair a sidewalk square?

$$
\begin{aligned}
N=E(x) & =\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{0}^{1} x \cdot 30\left(x^{4}-x^{5}\right) d x \\
& =\left.\left(\frac{30 x^{6}}{6}-\frac{30 x^{7}}{7}\right)\right|_{0} ^{1} \\
& =\frac{30}{6}-\frac{30}{7}=\frac{5}{7} \text { hours or } 0.714 \text { hours }
\end{aligned}
$$

6. (6 points) Suppose that vehicle speeds on the Malahat can be represented with a normal distribution and that mean is $98 \mathrm{~km} / \mathrm{h}$ while the standard deviation is $16 \mathrm{~km} / \mathrm{h}$.
(a) What percentage of vehicle speeds are over $100 \mathrm{~km} / \mathrm{h}$?

$$
z=\frac{x-N}{\sigma}=\frac{100-98}{16}=0.125
$$

$$
\begin{aligned}
P(z>0.125) & =0.5-0.04925 \\
& =0.45025=4506
\end{aligned}
$$

$$
\left[\begin{array}{rl}
\text { for } z & =0.12, \\
z & \rho=0.4522 \\
z & =0.3,
\end{array}=0.4483\right]
$$

$$
z=0.125 \text {, ares }=1 / 2(0.0428+0.0577)=0.04975
$$

but
$z=0.12$, area $=0.0978$ also acceptable $z=0.13$, are e $=0.0517$

$$
\begin{aligned}
P(z<0.25) & =1-P(z>0.25) \\
& =0.5987 \quad \text { or } 59.9 \Omega
\end{aligned}
$$

(c) What speed separates the fastest 10% of all speeds from the slowest 90% ?

$$
\begin{aligned}
z & =\frac{x-\mu}{\sigma} \\
x & =\mu+2 \sigma \\
& =96+(1.28)(16) \\
& =116.48 \\
& =116 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

$$
\text { ares }=0,9
$$

