Section 4.4: Diagonalization
note: we oust similarity
definition: a square matrix A is diagonalizable if there is a diagonal matrix D and an invertible matrix ρ such the

$$
\begin{aligned}
\rho^{-1} A P & =D \\
& o r \\
A & =\rho D l^{-1}
\end{aligned}
$$

example: we found earlier that matrix $A=\left[\begin{array}{rr}1 & 2 \\ -1 & 4\end{array}\right]$ has $\lambda_{1}=2$ with $\vec{x}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$

$$
\lambda_{2}=3 \text { with } \vec{x}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

then $D=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$ and $P=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$

$$
\stackrel{\Delta=}{\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right]} \text { and } l=\left[\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right]
$$

check: $\quad A=P D l^{-1}$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]^{-1} \\
& =\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right] \frac{1}{1}\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & -2 \\
-3 & 6
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{cc}
1 & 2 \\
-1 & 4
\end{array}\right]
$$

theorem: an NXN matrix A is diagonelizable if A hos N linearly independent eishrecters
example: a) a certain 3×3 matrix has 2 eigenvalues (one is repeated), but the repeated value has two eighrecters

- 3 eigenvectors in to kl \rightarrow disganalizable
b) a different 3×3 matrix hes 2 eigenvalue (are is repeated), and the repeated value has only one eigenvector
- 2 eigenvectors in tote \rightarrow not diegenal.zable
example: are the following matrices dicgancireble? shaw your reasoning.
a) $A=\left[\begin{array}{ccc}1 & -7 & 3 \\ -1 & -1 & 1 \\ 4 & -4 & 0\end{array}\right]$
answer: find eigenvalues by $\operatorname{det}(A-\lambda I)=0$

$$
\begin{array}{r}
(1-\lambda)(-1-\lambda)(-\lambda)-28+12-3(4)(-1-\lambda)+7 \lambda \\
+4(1-\lambda)=0 \\
(1-\lambda)(1+\lambda) \lambda-16+12(1+\lambda)+7 \lambda+4(1-\lambda)=0 \\
\lambda-\lambda^{3}-16+12+12 \lambda+7 \lambda+4-4 \lambda=0
\end{array}
$$

$$
\begin{gathered}
\lambda-\lambda^{3}-16+12+12 \lambda+7 \lambda+4-4 \lambda=0 \\
16 \lambda-\lambda^{3}=0
\end{gathered}
$$

section 4.4: contd 2023/11/17

$$
\begin{aligned}
\lambda(4-\lambda)(4+\lambda) & =0 \\
\lambda & =0,4,-4
\end{aligned}
$$

3 distinct eiservalnes means 3 lineorly indefendent eigenvecters, so
A is dissonalizable
b) $A=\left[\begin{array}{lll}1 & 2 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 2\end{array}\right]$
answer: fird eigenvalues from $\operatorname{det}(A-\lambda I)=0$

$$
\left|\begin{array}{ccc}
1-\lambda & 2 & -1 \\
0 & 1-\lambda & 3 \\
0 & 0 & 2-\lambda
\end{array}\right|=0
$$

$$
\text { choracteristic } \quad \rightarrow \quad(1-\lambda)^{2}(2-\lambda)=0
$$

equation
als mult 2 alge mult
we knas that $\lambda_{2}=2$ has alg. mult. I so will have are eighvecter but
$x_{1}=1$ with als mult 2 could hove eithe one or two eigervecters
then A then A B
is not dias
dieg
then
is not
dias

Then I P
diag
so find eigenvecter (s) for the repeated eigenvalue
for $\lambda_{1}=1$, Solve $(A-\lambda I) \quad \vec{x}=0$

$$
\left[\begin{array}{ccc|c}
1-\lambda & 2 & -1 & 0 \\
0 & 1-\lambda & 3 & 0 \\
0 & 0 & 2-\lambda & 0
\end{array}\right]
$$

$$
\left[\begin{array}{ccc|c}
0 & 2 & -1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

ξ PREF
$\left[\begin{array}{lll|l}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
τ
free voicble means are eignvecter
so $\lambda_{1}=1$ has only ane eigenvector (algmult 2) $\lambda_{2}=2$ because aIs mut I so only 2 vectors in total, bA wold need 3

No, A is not diegonalizeble
note: if the geometric molt is equal to algebraic molt for each eighvalue, then matrix is diagonalizable - otherwise its not
example: diagonalize $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right]$
answer: step (1): find eigenvalues

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=0 \\
& \left|\begin{array}{cc}
1-\lambda & 3 \\
2 & 2-\lambda
\end{array}\right|=0 \\
& (1-\lambda)(2-\lambda)-6
\end{aligned}=0 \quad\left\{\begin{aligned}
2-3 \lambda+\lambda^{2}-6 & =0 \\
\lambda^{2}-3 \lambda-4 & =0 \\
(\lambda-4)(\lambda+1) & =0 \\
\lambda & =-1,4
\end{aligned}\right.
$$

step (2): find eigenvectors with solviy (A-入I) $\vec{x}=0$

$$
\begin{aligned}
& \text { for } \lambda_{1}=-1, \quad\left[\begin{array}{ll|l}
2 & 3 & 0 \\
2 & 3 & 0
\end{array}\right] \stackrel{\operatorname{ReEf}}{n} \quad\left[\begin{array}{ll|l}
1 & 3 / 2 & 0 \\
0 & 0 & 0
\end{array}\right] \quad x+3 / 2 y=0 \\
& \text { Thee voricbu } \\
&\left\{\begin{array}{l}
\\
x=-3 / 2 t \\
y=t
\end{array}\right.
\end{aligned}
$$

So eigenvector is $\left[\begin{array}{c}-3 / 2 \\ 1\end{array}\right]$ or $\left[\begin{array}{c}-3 \\ 2\end{array}\right]$
now find second eigervecter:
for $\lambda_{2}=4$

$$
\left\{\begin{array}{l}
x=t \\
y=t
\end{array}\right.
$$

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-3 & 3 & 0 \\
2 & -2 & 0
\end{array}\right]} \\
{\left[\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad x-y=0} \\
\hat{\imath} \text { REF } \\
\text { let } y=t \\
\vec{x}_{2}=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{gathered}
$$

step (3): write at D and P

$$
\text { so } \begin{aligned}
& D= {\left[\begin{array}{rr}
-1 & 0 \\
0 & 4
\end{array}\right] \text { and } P=\left[\begin{array}{rr}
-3 & 1 \\
2 & 1
\end{array}\right] } \\
& {\left[\text { note: } D=\left[\begin{array}{cc}
4 & 0 \\
0 & -1
\end{array}\right] \text { and } l=\left[\begin{array}{cc}
1 & -3 \\
1 & 2
\end{array}\right]\right.} \\
& \text { also acceptable }
\end{aligned}
$$

nav use you disganalization of A to calculate
how?

$$
\begin{aligned}
A & =\rho D \rho^{-1} \\
A^{2} & =\left(\rho D \rho^{-1}\right)\left(\rho D \rho^{-1}\right) \\
& \left.=\rho D \rho^{-1} \rho D \rho^{-1}\right) \\
& =\rho D^{2} \rho^{-1} \\
\downarrow & \\
A^{N} & =\rho D^{N} \rho^{-1}
\end{aligned}
$$

bA $D=\left[\begin{array}{ll}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$ so $D^{2}=\left[\begin{array}{ll}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
\lambda_{1}^{2} & 0 \\
0 & \lambda_{2}^{2}
\end{array}\right] \\
D^{N}= & {\left[\begin{array}{cc}
\lambda_{1}^{N} & 0 \\
0 & \lambda_{2}^{N}
\end{array}\right] }
\end{aligned}
$$

so if $A=\rho D l^{-1}$

$$
=\left[\begin{array}{cc}
-3 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{rr}
-1 & 0 \\
0 & 4
\end{array}\right] \frac{1}{5}\left[\begin{array}{rr}
-1 & 1 \\
2 & 3
\end{array}\right]
$$

$$
\begin{aligned}
\rho^{-1} & =\frac{1}{-5}\left[\begin{array}{cc}
1 & -1 \\
-2 & -3
\end{array}\right] \\
& =\frac{1}{5}\left[\begin{array}{cc}
-1 & 1 \\
2 & 3
\end{array}\right]
\end{aligned}
$$

$$
\text { then } \begin{aligned}
A^{8} & =\left[\begin{array}{cc}
-3 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
(-1)^{8-1} & 0 \\
0 & 4^{8}
\end{array}\right] \frac{1}{5}\left[\begin{array}{cc}
-1 & 1 \\
2 & 3
\end{array}\right] \\
& =\frac{1}{5}\left[\begin{array}{cc}
-3 & 4^{8} \\
2 & 4^{8}
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
2 & 3
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{ll}
26215 & 35321 \\
26214 & 35322
\end{array}\right]
$$

example: consider the matrix A where

$$
\left\{\begin{array}{l}
A\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
6
\end{array}\right] \\
A\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
5
\end{array}\right]
\end{array}\right.
$$

Find matrices f and D and wite A \therefore the form $\quad A=P D P^{-1}$. Then calculate A.
answer: method H I
DO NOT USE! THIS METHOD
B LONG AND HORRIBLE!

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}3 \\ 6\end{array}\right]$
so

$$
\begin{aligned}
& a+2 b=3 \\
& c+2 d=6
\end{aligned}
$$

and $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}5 \\ 5\end{array}\right]$
so

$$
\begin{aligned}
& a+b=5 \\
& c+a=5
\end{aligned}
$$

then solve the 4×4 system to get A, then find eigenvalues and eigenvectors
method \#2: USE THIS ONE!

$$
\begin{aligned}
& A\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
6
\end{array}\right] \quad \text { so } \quad \lambda_{1}=3 \text { and } \vec{x}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& A\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
5
\end{array}\right] \quad \text { so } \quad \lambda_{2}=5 \text { and } \vec{x}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right.
\end{aligned}
$$

then $P=\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$ and $D=\left[\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right]$
whine $P^{-1}=\frac{1}{-1}\left[\begin{array}{cc}1 & -1 \\ -2 & 1\end{array}\right]=\left[\begin{array}{cc}-1 & 1 \\ 2 & -1\end{array}\right]$

$$
\text { finally } \quad \begin{aligned}
A & =P D \rho^{-1} \\
& =\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
0 & 5
\end{array}\right]\left[\begin{array}{rr}
-1 & 1 \\
2 & -1
\end{array}\right] \\
& =\left[\begin{array}{ll}
3 & 5 \\
6 & 5
\end{array}\right]\left[\begin{array}{rr}
-1 & 1 \\
2 & -1
\end{array}\right] \\
& =\left[\begin{array}{ll}
7 & -2 \\
4 & 1
\end{array}\right]
\end{aligned}
$$

