Math 251
 Test 1

$$
\text { Total }=\overline{25}
$$

Show your work. All of the work on this test must be your own.

1. (4 points) Consider the following vectors.

$$
\mathbf{u}=\left[\begin{array}{c}
x \\
-1 \\
3
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{c}
4 \\
2 \\
-6
\end{array}\right]
$$

Find all values of x for which:
(a) \mathbf{u} and \mathbf{v} are perpendicular.

$$
\begin{aligned}
& \vec{u} \cdot \vec{v}=0 \\
& 4 x-2-18=0 \\
& 4 x=20 \\
& x=5
\end{aligned}
$$

(b) \mathbf{u} and \mathbf{v} are parallel.

$$
\begin{aligned}
& \vec{v}=k \vec{v} \\
& {\left[\begin{array}{c}
4 \\
2 \\
-6
\end{array}\right]=k\left[\begin{array}{c}
x \\
-1 \\
3
\end{array}\right] \quad \text { so } \quad k=-2} \\
& x=-2
\end{aligned}
$$

(c) \mathbf{u} and \mathbf{v} have the same norm.

$$
\begin{align*}
\|\vec{u}\| & =\|\vec{v}\| \\
\sqrt{x^{2}+1+9} & =\sqrt{16+4+36} \\
\sqrt{x^{2}+10} & =\sqrt{56} \tag{2}\\
x^{2}+10 & =56 \\
x & = \pm \sqrt{46} \\
& \approx \pm 6.78
\end{align*}
$$

2. (5 points) Consider the following three points.

$$
A=(0,1,-2), \quad B=(1,2,1), \quad C=(1,4,-3)
$$

(a) Find the angle $0 \leq \theta \leq 180^{\circ}$ between vectors $\mathbf{A B}$ and $\mathbf{B C}$.
(2)

$$
\overrightarrow{A B}=\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right], \quad \overrightarrow{B C}=\left[\begin{array}{c}
0 \\
2 \\
-4
\end{array}\right]
$$

$$
\begin{aligned}
& \overrightarrow{A B} \cdot \overrightarrow{B C}=\|\overrightarrow{A B}\|\|\overrightarrow{B C}\| \cos \theta \\
& \cos \theta=\frac{\overrightarrow{A B} \cdot \overrightarrow{B C}}{\|\overrightarrow{A B}\|\|\overrightarrow{B C}\|} \\
& \\
& =\frac{0+2-12}{\sqrt{1+1+9} \sqrt{0+4+16}}=\frac{-10}{\sqrt{11} \sqrt{20}} \\
& \theta \approx 132.4^{\circ} \text { or } 2.31 \mathrm{rads}
\end{aligned}
$$

(b) Find the vector component of $\mathbf{A B}$ along $\mathbf{B C}$.

$$
\begin{aligned}
\overrightarrow{D B} & =\operatorname{proj} \overrightarrow{B C}(\overrightarrow{A B})=\frac{\overrightarrow{B C} \cdot \overrightarrow{A B}}{\overrightarrow{B C} \cdot \overrightarrow{B C}} \overrightarrow{B C} \\
& =\frac{-10}{20}\left[\begin{array}{c}
0 \\
2 \\
-4
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right]
\end{aligned}
$$

(c) Find the vector component of $\mathbf{A B}$ perpendicular to $\mathbf{B C}$.

$$
\begin{aligned}
\overrightarrow{A B}= & \overrightarrow{A D}+\overrightarrow{D B} \\
\overrightarrow{A D} & =\overrightarrow{A B}-\overrightarrow{D B} \\
& =\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right]-\left[\begin{array}{r}
0 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{r}
1 \\
2 \\
1
\end{array}\right]
\end{aligned}
$$

3. (5 points) The parallelogram $A B C D$ has vertices at $A=(1,1,-1), B=(-3,2,-2)$, and $C=(-2,2,1)$. The convention is that the points are named in order as you go around the perimeter of the geometric figure. So point A is connected to points B and D.
(a) Is this parallelogram a rectangle? Explain briefly.

$$
\begin{aligned}
& \overrightarrow{A B}=\left[\begin{array}{c}
-4 \\
1 \\
-1
\end{array}\right] \quad \overrightarrow{B C}=\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right] \\
& \text { if } \overrightarrow{A B} \perp \overrightarrow{B C} \text {, then the dot product equals zero } \\
& \overrightarrow{A B} \cdot \overrightarrow{B C}=-4(1)+0+(-1)(3) \neq 0 \\
& \text { No, not a rectengle }
\end{aligned}
$$

(b) Is this parallelogram a rhombus? (A rhombus is a parallelogram with all four sides of equal length.) Explain briefly.

$$
\begin{aligned}
& \|\overrightarrow{A B}\|=\sqrt{16+1+1}=\sqrt{18} \\
& \|\overrightarrow{B C}\|=\sqrt{1+0+9}=\sqrt{10}
\end{aligned}
$$

sides are of different length, so
No, not a rhombus
(c) Calculate the coordinates of point D.

$$
\begin{aligned}
& \overrightarrow{A D}=\vec{D}-\vec{A} \text { and } \overrightarrow{A D}=\overrightarrow{B C} \\
& \text { so } \vec{D}=\vec{A}+\overrightarrow{A D} \\
& =A+\overrightarrow{B C} \\
& =\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right] \\
& \text { point } D=(2,1,2)
\end{aligned}
$$

4. (5 points) Consider the following plane.

$$
\left\{\begin{array}{l}
x=5-s+t \\
y=4+2 s-t \\
z=1-2 s
\end{array}\right.
$$

Calculate the distance from this plane to the point $P=(1,-2,9)$. the plane contains the point $(5,4,1)$ can vectors $\left[\begin{array}{c}-1 \\ 2 \\ -2\end{array}\right]$ and $\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$
normal is then

$$
\begin{aligned}
& \vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-1 & 2 & 2 \\
i & & 0
\end{array}\right|-\hat{c} \\
& =-2 \hat{\jmath}+\hat{k}-2 \hat{k}-2 \hat{\imath}=-2 \hat{\imath}-2 \hat{\jmath}-\hat{k} \\
& \vec{N}=\left[\begin{array}{l}
-2 \\
-2 \\
-1
\end{array}\right]
\end{aligned}
$$

$$
\text { distance }=\|\overrightarrow{P R}\|=\frac{4}{3} \sqrt{4+4+1}=\frac{4}{3} \cdot 3=4
$$

5. (6 points) Consider the following systems.
(a) Use Gauss-Jordan elimination to solve the following system and be sure to specify which row operations you are using. Write your answer in column vector form.

$$
\begin{align*}
& \left\{\begin{aligned}
3 x+y+5 z & =-11 & \text { RREF (3) } \\
x-y+3 z & =-9 & \text { solution (1) }
\end{aligned}\right. \tag{REF 3}\\
& {\left[\begin{array}{ccc|c}
3 & 1 & 5 & -11 \\
1 & -1 & 3 & -9 \\
-2 & 1 & -5 & 14
\end{array}\right] \xrightarrow{R_{1} \leftrightarrow R_{2}}\left[\begin{array}{ccc|c}
1 & -1 & 3 & -9 \\
3 & 1 & 5 & -11 \\
-2 & 1 & -5 & 14
\end{array}\right]} \\
& \begin{array}{l}
\text { only -i } \\
\text { row-echela, } \\
\text { no RREF }
\end{array} \\
& R_{\alpha}-3 R_{3}+2 R_{1}\left[\begin{array}{ccc|c}
1 & -1 & 3 & -9 \\
0 & 4 & -4 & 16 \\
0 & -1 & 1 & -4
\end{array}\right] \\
& \begin{array}{c}
R_{1}-R_{3} \\
1 / 4 R_{2} \\
R_{3}+1 / 4 R_{2}
\end{array}\left[\begin{array}{ccc|c}
1 & 0 & 2 & -5 \\
0 & 1 & -1 & 4 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \begin{array}{c}
x+2 z=-5 \\
y-z=4
\end{array} \\
& \left.\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=t\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-5 \\
4 \\
0
\end{array}\right] \quad \begin{array}{ccc|c}
1 / 4 R_{2} & 0 & 1 & -1 \\
R_{3}+1 / 4 R_{2} & 4 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \left.\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=t\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-5 \\
4 \\
0
\end{array}\right] \quad \begin{array}{ccc|c}
1 / 4 R_{2} & 0 & 1 & -1 \\
R_{3}+1 / 4 R_{2} & 4 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \text { then }\left\{\begin{array}{l}
x=-2 t-5 \\
y=t+4 \\
z=t
\end{array}\right.
\end{align*}
$$

(b) For which values of h and k does the following system have no solutions? (Use any method.)

$$
\left.\left.\begin{array}{rl}
& \left\{\begin{array}{r}
x+6 y= \\
-4 x+k y=10
\end{array}\right. \\
\left\{\begin{array}{l}
-4 x-24 y=-4 h \\
-4 x+k y=10
\end{array}\right. \\
\text { So mull by }-4
\end{array}\right\} \begin{array}{l}
k=-24 \\
h \neq-5 / 2
\end{array}\right]
$$

