\qquad
Instructor: Patricia Wrean

Math 251
 Test 1

$$
\text { Total }=\overline{20}
$$

Show your work. All of the work on this test must be your own.

1. (5 points) Consider the triangle $A B C$ where

$$
A=(2,2,1), \quad B=(-1,3,-1), \quad C=(0,4,1)
$$

(a) Calculate the area of this triangle.
(b) Is this triangle a right triangle? Explain your reasoning.
a) $\overrightarrow{A B}=\left[\begin{array}{r}-3 \\ 1 \\ -2\end{array}\right]$

$$
\overrightarrow{A C}=\left[\begin{array}{c}
-2 \\
2 \\
0
\end{array}\right] \quad \overrightarrow{B C}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]
$$

$$
\overrightarrow{A B} \times \overrightarrow{A C}=
$$

$$
\begin{aligned}
& =4 \hat{\jmath}-6 \hat{k}+2 \hat{k}+4 \hat{\imath} \\
& =4 \hat{\imath}+4 \hat{\jmath}-4 \hat{k} \\
\text { area }=1 / 2\|A \vec{B} \times \overrightarrow{A C}\|=1 / 2 \sqrt{4^{2}+4^{2}+\left(-4^{2}\right)} & =1 / 2 \sqrt{48} \\
& =2 \sqrt{3} \\
& \approx 3.464
\end{aligned}
$$

3
any of these
b)
(2)

$$
\begin{aligned}
& \overrightarrow{A B} \cdot \overrightarrow{A C}=\left[\begin{array}{r}
-3 \\
1 \\
-2
\end{array}\right] \cdot\left[\begin{array}{c}
-2 \\
2 \\
0
\end{array}\right]=6+2+0 \neq 0 \\
& \overrightarrow{A B} \cdot \overrightarrow{B C}=\left[\begin{array}{c}
-3 \\
1 \\
-2
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]=-3+1-4 \neq 0 \\
& \overrightarrow{A C} \cdot \overrightarrow{B C}=\left[\begin{array}{c}
-2 \\
2 \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]=-2+2+0=0
\end{aligned}
$$

only checked are angle
so $\overrightarrow{A C} \perp \overrightarrow{B C}$
and yes, $\triangle A B C$ is a right triangle
2. (5 points) Consider the point $P=(4,-2,1)$ and the plane $3 x+2 y-z=5$. Find the point Q in the plane that is closest to P.

let X be another point on the plane,

$$
\text { say }(0,0,-5) \text { (} 2
$$

$$
\text { then } \overrightarrow{\rho x}=\left[\begin{array}{r}
-4 \\
2 \\
-6
\end{array}\right]
$$

and $\vec{N}=$
(y)

$$
=\frac{\vec{N} \cdot \overrightarrow{P x}}{\vec{N} \cdot \vec{N}} \stackrel{\rightharpoonup}{N}
$$

$$
=\frac{-12+4+6}{9+4+1}\left[\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right]=-\frac{2}{14}\left[\begin{array}{c}
3 \\
2 \\
-1
\end{array}\right]=\frac{1}{7}\left[\begin{array}{c}
-3 \\
-2 \\
1
\end{array}\right]
$$

$$
\overrightarrow{P Q}=\vec{Q}-\vec{\rho}
$$

$$
\text { so } \vec{Q}=\vec{\rho}+\overrightarrow{\rho Q}=\left[\begin{array}{c}
4 \\
-2 \\
1
\end{array}\right]+\left[\begin{array}{c}
-3 / 7 \\
-2 / 7 \\
1 / 7
\end{array}\right]
$$

optional check:

$$
=\left[\begin{array}{c}
25 / 7 \\
-16 / 7 \\
8 / 7
\end{array}\right]
$$

not: $3 x+2 y-z=5$

$$
\begin{aligned}
3\left(\frac{25}{7}\right)+2\left(-\frac{16}{7}\right)-\frac{8}{7} & =5 \\
\frac{75-32-8}{7} & =5 \\
\frac{35}{7} & =5
\end{aligned}
$$

$$
\begin{gathered}
\operatorname{and} \quad Q=(25 / 7,-16 / 7,8 / 7) \\
\approx(3.57,-2.29,1.14)
\end{gathered}
$$

3. (5 points) Consider the line that goes through the point P and has direction vector \mathbf{v} where

$$
P=(1,-1,1) \quad \mathbf{v}=\left[\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right]
$$

(a) At what point does this line intersect the $x y$-plane?
(b) What angle does this line make with the $x y$-plane?
a) parametric equations for the line: $\left\{\begin{array}{l}x=t+1 \\ \text { if this but } \\ \text { nolhig else, } 1 / 2\end{array}\right\}-3 t-1$ (1) $\quad\left\{\begin{array}{l}1 \\ z=2 t+1\end{array}\right.$
the $x y$-plane has $z=0$

$$
\text { so } 2 t+1=0 \text { and } t=-1 / 2
$$

then

$$
\begin{aligned}
& x=-1 / 2+1=1 / 2 \\
& y=-3\left(-\frac{1}{2}\right)-1=3 / 2-1=1 / 2
\end{aligned}
$$

point of intersection is $(1 / 2,1 / 2,0)$
b)

$$
\begin{aligned}
& =\frac{2}{\sqrt{14}}(1 \\
& \theta=57.7^{\circ} \text { or } 1.007 \mathrm{rads} \\
& \cos \theta=\frac{\vec{N} \cdot \vec{v}}{\|\vec{N}\|\|\vec{v}\|} \quad \text { where } \quad \vec{N}=\hat{k}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad \text { and } \vec{v}=\left[\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right] \\
& \vec{N} \cdot \vec{v}=0+0+2=2 \\
& \|\vec{N}\|=1 \\
& \|\vec{v}\|=\sqrt{1^{2}+(-3)^{2}+2^{2}}=\sqrt{14}
\end{aligned}
$$

if θ is the angle that vector \vec{v} makes with the normal to the plane, then $\left(90^{\circ}-\theta\right)$ is the angle that vector \vec{v} makes with the
$\frac{\vec{N} \cdot \vec{v}}{\|\vec{N}\|\|\vec{v}\|}$
and angle we wont is $90^{\circ}-\theta$ or

$$
32.3^{\circ} \text { or } 2.135 \text { rads }
$$

note: other methods possible (see me for details)
4. (5 points) Consider the following systems.
(a) Use Gauss-Jordan elimination to find all solutions of the following linear system.

Write your answer in parametric form. Clearly show your steps, including your row operations.

$$
\begin{aligned}
& \left\{\begin{aligned}
w-2 x+3 y & =4 \\
3 w-6 x+2 y+7 z & =-2
\end{aligned}\right. \\
& {\left[\begin{array}{rrrr|r}
1 & -2 & 3 & 0 & 4 \\
3 & -6 & 2 & 7 & -2
\end{array}\right]} \\
& \xrightarrow[R_{2}-3 R_{1}]{ }\left[\begin{array}{rrrr|r}
1 & -2 & 3 & 0 & 4 \\
0 & 0 & -7 & 7 & -14
\end{array}\right] \\
& -1 / 7 R_{2}\left[\begin{array}{cccc|c}
1 & -2 & 3 & 0 & 4 \\
0 & 0 & 1 & -1 & 2
\end{array}\right] \\
& R_{1}-3 R_{3}\left[\begin{array}{cccc|c}
1 & -2 & 0 & 3 & -2 \\
0 & 0 & 1 & -1 & 2
\end{array}\right] \\
& \text { not }
\end{aligned}
$$

(b) For what values of h and k does the following system have one unique solution?

$$
\begin{aligned}
& \left\{\begin{array}{r}
x+3 y=5 \\
2 x+h y=k
\end{array}\right. \\
& {\left[\begin{array}{ll|l}
1 & 3 & 5 \\
2 & h & k
\end{array}\right] \xrightarrow[R_{2}-2 R_{1}]{ }\left[\begin{array}{cc|c}
1 & 3 & 5 \\
0 & h-6 & k-10
\end{array}\right] \text { (1) }} \\
& \text { for there to be one uniave } \\
& \text { solution, this entry cannot } \\
& \text { be zero } \\
& \text { note: } k-10 \text { cen be any } \\
& h \neq 6, \quad k \in \mathbb{R} \\
& \text { (no estructions on k) }
\end{aligned}
$$

