Math 251

Test 2

$$
\text { Total }=\overline{20}
$$

Show your work. All of the work on this test must be your own.

1. (4 points) Consider the matrices $A=\left[\begin{array}{l}2 \\ 4\end{array}\right], \quad B=\left[\begin{array}{ll}3 & 5\end{array}\right], \quad C=\left[\begin{array}{cc}2 & 1 \\ 4 & -3\end{array}\right]$.

Evaluate the following, if they exist. If they do not exist, say so.
(a) $A B$

$$
A B=\left[\begin{array}{l}
2 \\
4
\end{array}\right]\left[\begin{array}{ll}
3 & 5
\end{array}\right]=\left[\begin{array}{ll}
6 & 10 \\
12 & 20
\end{array}\right]
$$

(b) $B A$

$$
B A=\left[\begin{array}{ll}
3 & 5
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right]=[26]
$$

(c) B^{-1} does not exist
(a matrix must be square to be invertible)
(d) C^{2}

$$
c^{2}=\left[\begin{array}{cc}
2 & 1 \\
4 & -3
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
4 & -3
\end{array}\right]=\left[\begin{array}{cc}
8 & -1 \\
-4 & 13
\end{array}\right]
$$

2. (2 points) Set up BUT DO NOT SOLVE a system of equations that will allow you to balance the following chemical equation.

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{C}+\mathrm{N}_{2} \rightarrow \mathrm{NaCN}+\mathrm{CO} \\
& x_{1} \mathrm{Na}_{2} \mathrm{CO}_{3}+x_{2} \mathrm{C}+x_{3} \mathrm{~N}_{2} \rightarrow x_{4} \mathrm{NaCN}+x_{5} \mathrm{CO}
\end{aligned}
$$

$$
\text { Na: } \quad 2 x_{1}=x_{4}
$$

$$
C: \quad x_{1}+x_{2}=x_{4}+x_{5}
$$

$$
0: \quad 3 x_{1}=x_{5}
$$

$$
N: \quad 2 x_{3}=x_{4}
$$

3. (5 points) Solve the following system using the LU method.
so $\begin{aligned} & L \\ & \text { ~ } \\ & \text { let }=\vec{b} \\ & \vec{y}=u \vec{x}\end{aligned}$
then $L \vec{y}=\vec{b}$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-3 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
9 \\
9 \\
7
\end{array}\right]
$$

se $\quad y_{1}=9$

$$
\begin{aligned}
& 2 y_{1}+y_{2}=9, \quad 18+y_{2}=9, \quad y_{2}=-9 \\
& -3 y_{1}-\partial y_{2}+y_{3}=7, \quad-27+18+y_{3}=7, \quad y=16
\end{aligned}
$$

$$
\text { and } \quad \cup \vec{x}=\vec{y}
$$

$$
\left[\begin{array}{ccc}
2 & -1 & 4 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
9 \\
-9 \\
16
\end{array}\right]
$$

where $\quad z=16$

$$
\begin{aligned}
& 3 y=-9, \quad y=-3 \\
& 2 x-y+4 z=9, \quad 2 x+3+64=9, \\
& \\
& 2 x=-58, \quad x=-29
\end{aligned}
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-29 \\
-3 \\
16
\end{array}\right]
$$

4. (4 points) Consider the following 4×4 matrix A.

$$
A=\left[\begin{array}{llll}
1 & 2 & 1 & 1 \\
1 & 2 & 2 & 1 \\
3 & 6 & 4 & 3 \\
2 & 4 & 2 & 3
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

where

$$
A^{T}=\left[\begin{array}{llll}
1 & 1 & 3 & 2 \\
2 & 2 & 6 & 4 \\
1 & 2 & 4 & 2 \\
1 & 1 & 3 & 3
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{cccc}
1 & 0 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Give the values of $\operatorname{Rank}(A)$ and $\operatorname{Nullity}(A)$.

$$
\begin{array}{ll}
\operatorname{Rank}(A)=3 & (=\text { number of leading ones in RREF) } \\
\text { NUllify }(A)=1 & (=\text { number of free variables in RREF) }
\end{array}
$$

(b) Find a basis for $\operatorname{Row}(A)$ in terms of the rows of A.

$$
\text { basis for } \operatorname{Col}\left(A^{\top}\right)=\left\{\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
4 \\
2 \\
3
\end{array}\right]\right\}
$$

$$
\text { so basis for } \operatorname{Rav}(A)=\left\{\left[\begin{array}{llll}
1 & 2 & 1 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 2 & 2 & 1
\end{array}\right]\right. \text {, }
$$

$$
\left.\left[\begin{array}{llll}
2 & 4 & 2 & 3
\end{array}\right]\right\}
$$

(c) Find a basis for $\operatorname{Col}(A)$ in terms of the columns of A.

$$
\text { basis for } \operatorname{Col}(A)=\left\{\left[\begin{array}{l}
1 \\
1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
4 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
3 \\
3
\end{array}\right]\right\}
$$

5. (5 points) Consider the transformation T from R^{2} to R^{2}. T first reflects a vector about the y-axis, then rotates it by 30° clockwise, then reflects it in the line $y=x$.
Find the standard matrix A associated with this transformation and simplify your answer.

Hint: $R(\theta)=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ reflect abut y-axis:

so $A_{1}=\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$
rotate by 30° dockwise :

$$
\theta=-30^{\circ}
$$

$$
\begin{aligned}
A_{2}=R_{\left(-30^{\circ}\right)} & =\left[\begin{array}{cc}
\cos \left(-30^{\circ}\right) & -\sin \left(-30^{\circ}\right) \\
\sin \left(-30^{\circ}\right) & \cos \left(-30^{\circ}\right)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\sqrt{3} / 2 & 1 / 2 \\
-1 / 2 & \sqrt{3} / 2
\end{array}\right]
\end{aligned}
$$

reflect in $y=x$:

$$
T_{3}(\hat{\imath})=\hat{\jmath}
$$

$T_{3}(\hat{\jmath})=\hat{\imath}$

$$
\text { finally } \begin{aligned}
A=A_{3} A_{2} A_{1} & =\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
\sqrt{3} / 2 & 1 / 2 \\
-1 / 2 & \sqrt{3} / 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
-1 / 2 & \sqrt{3} / 2 \\
\sqrt{3} / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 / 2 & \sqrt{3} / 2 \\
-\sqrt{3} / 2 & 1 / 2
\end{array}\right]
\end{aligned}
$$

