\qquad
Instructor: Patricia Wrean

Math 251
 Test 3

$$
\text { Total }=\overline{20}
$$

Show your work. All of the work on this test must be your own.

$$
\operatorname{proj}_{\mathbf{u}} \mathbf{v}=\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}
$$

1. (5 points) Consider the following complex numbers.

$$
z_{1}=3-i, z_{2}=5 e^{i \pi}, z_{3}=4 e^{i 2 \pi / 3}
$$

Evaluate the following. You may leave your answer in either rectangular or polar form, your choice. If using polar form, your angles should satisfy $0 \leq \theta<2 \pi$ or $0 \leq \theta<360^{\circ}$, as appropriate.
(a) $z_{1}+z_{2}$

$$
z_{2}=-5
$$

so $2_{1}+2_{2}=(3-i)+(-5)$

$$
=-2-i
$$

(b) $z_{2} z_{3}$

$$
\begin{aligned}
z_{2} z_{3} & =\left(5 e^{i \pi}\right)\left(4 e^{i 2 \pi / 3}\right) \\
& =20 e^{i(\pi+2 \pi / 3)} \\
& =20 e^{i 5 \pi / 3}
\end{aligned}
$$

$$
1
$$

(c) z_{3}^{5}

$$
z_{3}^{5}=\left(4 e^{i 2 \pi / 3}\right)
$$

\in need reference angle

$$
\begin{aligned}
& \therefore[0,2 \pi) \\
& \frac{10 \pi}{3}-2 \pi=4 \pi / 3
\end{aligned}
$$

2. (3 points) Use Cramer's Rule to solve the following system of linear equations.

$$
\left\{\begin{array}{l}
2 x+7 y=-5 \\
-x+h y=1
\end{array}\right.
$$

Note: your answer will be in terms of h.

then $x=\frac{\operatorname{det}(A,(\vec{b}))}{\operatorname{det}(A)}=\frac{-5 h-7}{2 h+7}$

$$
y=\frac{\operatorname{det}\left(A_{2}(\vec{b})\right)}{\operatorname{det}(A)}=\frac{-3}{2 h+7}
$$

3. (6 points) Consider the matrix A given below. Find diagonal matrix D and invertible matrix P such that $A=P D P^{-1}$. Note: you do not need to calculate P^{-1}.

$$
A=\left[\begin{array}{lll}
2 & 2 & 2 \\
0 & 2 & 0 \\
0 & 1 & 3
\end{array}\right]
$$

fist find eigenvalues

$$
\operatorname{det}(A-\lambda I)=0
$$

$$
\begin{align*}
(2-\lambda)^{2}(3-\lambda) & =0 \\
\lambda & =2,2,3 \tag{1}
\end{align*}
$$

then find eisenvecters: solve $(A-\lambda I) \vec{x}=0$

$$
\text { finally, } l=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & 0 \\
0 & 1 & 1
\end{array}\right] \text { with } \quad \rho=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

$$
\begin{aligned}
& \text { for } \lambda_{1}=2, \quad A-\lambda I=\left[\begin{array}{lll}
0 & 2 & 2 \\
0 & 0 & 0 \\
0 & 1 & 1
\end{array}\right] \\
& \begin{array}{l}
\text { REF } \\
\sim
\end{array} \\
& \left\{\begin{array}{l}
x=s \\
y=-t \\
z=t
\end{array}\right. \\
& \text { so }\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=s\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{ccc}
-1 & 2 & 2 \\
0 & -1 & 0 \\
0 & 1 & 0
\end{array}\right] \xrightarrow{\text { REF }}} \\
& {\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
& \left\{\begin{array}{l}
x=2 t \\
y=0 \\
z=t
\end{array}\right. \\
& \text { so }\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=t\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] \\
& \text { T } \\
& \text { let } z=t
\end{aligned}
$$

4. (6 points) Consider the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{u} below and let subspace $W=\operatorname{span}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$.

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
2
\end{array}\right], \mathbf{u}\left[\begin{array}{c}
3 \\
0 \\
0 \\
-1
\end{array}\right]
$$

(a) Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is an orthogonal set.
(b) Find the associated orthonormal set for $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
(c) Find $\operatorname{proj}_{W}(\mathbf{u})$ and $\operatorname{perp}_{W}(\mathbf{u})$.
a) $\vec{v}_{1} \cdot \vec{v}_{2}=1+0-1+0=0$ so $\vec{v}_{1} \perp \vec{v}_{2}$
b) orthonormal set $=\left\{\frac{1}{\sqrt{3}}\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 0\end{array}\right], \frac{1}{\sqrt{6}}\left[\begin{array}{c}1 \\ 0 \\ -1 \\ 2\end{array}\right]\right.$
c) $\quad \operatorname{\rho roj} \omega(u)=\operatorname{proj} \vec{v}_{1}(\vec{u})+\operatorname{proj} \vec{v}_{2}(\vec{u})$

$$
=\frac{\vec{v}_{1} \cdot \vec{u}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}+\frac{\vec{v}_{2} \cdot \vec{u}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{v}_{2}
$$

$$
=\frac{3}{3}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right]+\frac{3-2}{6}\left[\begin{array}{c}
1 \\
0 \\
-1 \\
2
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
0
\end{array}\right]+1 / 6\left[\begin{array}{r}
1 \\
0 \\
- \\
2
\end{array}\right]
$$

$$
=\left[\begin{array}{c}
7 / 6 \\
-1 \\
5 / 6 \\
1 / 3
\end{array}\right]
$$

$$
\operatorname{\rho er\rho } \omega(\vec{u})=\vec{u}-\operatorname{\rho roj}_{\omega}(\vec{u})=\left[\begin{array}{c}
3 \tag{11}\\
0 \\
0 \\
-1
\end{array}\right]-\left[\begin{array}{c}
7 / 6 \\
-1 \\
5 / 6 \\
1 / 3
\end{array}\right]=\left[\begin{array}{c}
11 / 6 \\
1 \\
-5 / 6 \\
-4 / 3
\end{array}\right]
$$

