\qquad
Instructor: Patricia Wrean

Math 251
 Test 1

Total $=\overline{20}$

Show your work. All of the work on this test must be your own.

1. (6 points) Consider the following vectors.

$$
\mathbf{u}=\left[\begin{array}{c}
-1 \\
4 \\
2
\end{array}\right] \quad \mathbf{v}=\left[\begin{array}{c}
2 \\
0 \\
3
\end{array}\right] \quad \mathbf{w}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

(a) Calculate the angle $0 \leq \theta<180^{\circ}$ between \mathbf{u} and \mathbf{v}.
(b) Find all unit vectors that are parallel to \mathbf{u}.
(c) Compute $\|2 \mathbf{v}-\mathbf{w}\|$.
2. (4 points) Consider the plane $3 x+2 y-z=5$.
(a) Is point $P=(2,-7,-13)$ in this plane? Explain your reasoning.
(b) Give parametric equations for the line perpendicular to this plane that goes through the point $Q=(-1,1,4)$.
3. (5 points) Consider three points

$$
P=(2,0,-1), \quad Q=(-1,3,-2), \quad R=(0,4,-1)
$$

(a) Calculate the area of the triangle $P Q R$.
(b) Give the general equation for the plane that contains points P, Q, and R.
(c) Is the vector $\mathbf{u}=\left[\begin{array}{l}1 \\ 4 \\ 2\end{array}\right]$ parallel to the plane you found in part (b)? Explain briefly.
4. (5 points) Consider the line that goes through the point P and has direction vector \mathbf{v} where

$$
P=(1,-1,1) \quad \mathbf{v}=\left[\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right]
$$

Find the point on this line that is closest to point $Q=(4,-2,1)$

