\qquad
Instructor: Patricia Wrean

Math 251

Test 2

$$
\text { Total }=\overline{20}
$$

Show your work. All of the work on this test must be your own.

1. (4 points) Consider the matrix $A=\left[\begin{array}{ll}2 & 3\end{array}\right]$.

Evaluate the following, if they exist. If they do not exist, say so.
(a) $A A^{T}$
(b) $A+A^{T}$
(c) $A^{T} A$
(d) A^{2}
2. (2 points) Solve the given matrix equation for X. Assume that all matrices are invertible.

$$
(B X)^{-1}=B^{-1} A
$$

3. (4 points) Find an $L U$ factorization of the following matrix.

$$
A=\left[\begin{array}{ccc}
2 & 1 & 3 \\
4 & -1 & 3 \\
-2 & 5 & 5
\end{array}\right]
$$

4. (5 points) Consider the following matrix A.

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 3 & 1 & 6 \\
2 & -1 & 0 & 1 & -1 \\
-3 & 2 & 1 & -2 & 1 \\
2 & 1 & 6 & 1 & 3
\end{array}\right] \xrightarrow{\text { RREF }}\left[\begin{array}{ccccc}
1 & 0 & 1 & 0 & -1 \\
0 & 1 & 2 & 0 & 3 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Give the values of $\operatorname{Rank}(A)$ and $\operatorname{Nullity}(A)$.
(b) Find a basis for $\operatorname{Null}(A)$.
5. (5 points) Find the equation of the parabola that passes through the points $(1,-2)$, $(-2,10)$, and the origin.
Set up and solve a system to find this parabola, writing your answer in the form $y=$ $a x^{2}+b x+c$. Use Gauss-Jordan elimination and be sure to specify which row operations you are using.

