\qquad
Instructor: Patricia Wrean

Math 251
 Test 3

Total $=\overline{20}$

Show your work. All of the work on this test must be your own.

$$
\begin{gathered}
\operatorname{proj}_{\mathbf{u}} \mathbf{v}=\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} \\
R_{\theta}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
\end{gathered}
$$

GOOD LUCK!

1. (5 points) Consider the transformation T which rotates a vector in \mathbb{R}^{2} clockwise by 135° and then reflects it about the line $y=-x$.
(a) Find the standard matrix A for this transformation.
(b) Now evaluate $T(\mathbf{v})$ for $\mathbf{v}=\left[\begin{array}{c}3 \\ -1\end{array}\right]$.
2. (4 points) Find all values of z such that $z^{6}=-64 i$.

Give exact answers. You may leave your answer in either rectangular or polar form, your choice. If using polar form, your angles should satisfy $0 \leq \theta<2 \pi$ or $0 \leq \theta<360^{\circ}$, as appropriate.
3. (2 points) Compute the determinant of the following matrix.

$$
A=\left[\begin{array}{cccc}
2 & 0 & 3 & 5 \\
-1 & -2 & 0 & 3 \\
0 & 2 & 0 & 0 \\
3 & -3 & k & 0
\end{array}\right]
$$

Your answer should be in terms of k.
4. (5 points) Consider the matrix A given below.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]
$$

(a) Find diagonal matrix D and invertible matrix P such that $A=P D P^{-1}$.
(b) Using your result for part (a), calculate A^{6}.
5. (4 points) Consider the set of vectors \mathcal{B} below and also the vector \mathbf{u}. \mathcal{B} is a basis of \mathbb{R}^{3}.

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]\right\} \quad \text { and } \quad \mathbf{u}=\left[\begin{array}{c}
-1 \\
5 \\
3
\end{array}\right]
$$

(a) Show that \mathcal{B} is an orthogonal basis of \mathbb{R}^{3}.
(b) Using the fact that \mathcal{B} is an orthogonal basis, express the vector \mathbf{u} as a linear combination of the vectors in \mathcal{B}.

