Explainer: Exact Equation IFs

Monday, January 20, 2020 12:06 PM

suppose we have

$$M(x, y) dx + N(x, y) dy = 0$$
but we perform the check and this DE is not exact.
Can we make it exact? Under cartain conditions, yes!
But what are the conditions?

suppose there is an IF = $\mu(x, y)$. Our DE becomes

$$\mu(M dx + \mu N dy = 0)$$
and if $\frac{1}{2}(\mu M) = \frac{1}{2}(\mu N)$, then DE is exact.
product rule segs:
 $\frac{1}{2}\mu(M) = \frac{1}{2}(\mu N)$, then DE is exact.
product rule segs:
 $\frac{1}{2}\mu(M) + \mu \frac{2}{2}M = \frac{1}{2}\mu(N + \mu \frac{2}{2}M)$
new what? Let's suppose that μ is only a function
of one of the two variables:
 $\mu(M + \mu M)$, then $\frac{1}{2}\mu = 0$
 $\frac{1}{2}\mu(M) = \frac{1}{2}\mu(M)$.

OE is:

Lecture Drafts Page 1

OE is:

now solve for <u>dy</u>: $\frac{\partial \mu}{\partial x} = \frac{\mu}{N} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right)$ $= \mathcal{N}\left(\frac{M_{y}-N_{x}}{N}\right)$ function If this is depends only on X can separate and of x only left, no y's only integrate 50 regular $\frac{d\mu}{dx} = \mathcal{N}\left(\frac{M_y - N_x}{y}\right)$ der N. $\frac{dN}{N} = dx \left(\frac{M_y - N_x}{N} \right)$ $IF = N(x) = \mathcal{L} \int \frac{(M_y - N_x)}{N} dx$

so multiply both sides of
$$DE$$
 by μ and
 DE is now exact.
similarly, if $\frac{N \times - M y}{N}$ is ally function of y .
Use $IF = \nu(y) = e^{\int \frac{N \times - M y}{M} dy}$

Lecture Drafts Page 2