Math 252: Theory Behind Higher Order Linear DEs

Preliminary Theory:

if $g(x)=0$, homagereas
$g(x) \neq 0$, nonhomogeneous

Consider the following linear $n^{\text {th }}$-order DE.

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\ldots+a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=g(x)
$$

For an initial-value problem (IVP), we have n initial conditions:

$$
\left\{\begin{array}{l}
y\left(x_{0}\right)=y_{0} \\
y^{\prime}\left(x_{0}\right)=y_{1} \\
\vdots \\
y^{(n-1)}\left(x_{0}\right)=y_{n-1}
\end{array}\right.
$$

We always assume that $a_{n}(x), \ldots, a_{1}(x), a_{0}(x)$ are continuous and $a_{n}(x) \neq 0$ for all x in an interval I containing x_{0}.
Theorem: under these assumptions, the IVP has a unique solution.

Homogeneous Linear DEs:

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\ldots+a_{2}(x) y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{0}(x) y=0
$$

The solutions of [H] satisfy the Principle of Superposition:
If $y_{1}, y_{2}, \ldots, y_{k}$ are solutions of $[\mathrm{H}]$, then

$$
c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{k} y_{k}
$$

is also a solution for any constants $c_{1}, c_{2}, \ldots, c_{k}$.
Definition: A set of functions $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ defined over an initial interval I is linearly dependent (LD) if there exists constants $c_{1}, c_{2}, c_{3}, \ldots, c_{k}$ not all zero such that:

$$
c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{k} y_{k}=0
$$

Otherwise, they are linearly independent (LI).

How do we test for LI? We can use a Wronskian:
Definition: Consider the functions $y_{1}, y_{2}, \ldots, y_{n}$. The Wronskian is:

$$
W=W\left[y_{1}, y_{2}, \ldots, y_{n}\right]=\left|\begin{array}{llll}
y_{1}, & y_{2}, & \ldots, & y_{n} \\
y_{1}^{\prime}, & y_{2}^{\prime}, & \ldots, & y_{n}^{\prime} \\
& \vdots & & \\
y_{1}^{(n-1)}, & y_{2}^{(n-1)}, & \ldots, & y_{n}^{(n-1)}
\end{array}\right|
$$

Theorem: If $y_{1}, y_{2}, \ldots, y_{n}$ are solutions of $[\mathrm{H}]$, then they will be LI on an interval I provided that $W \neq 0$ for all x in that interval.

Fundamental Set of Solutions:

Definition: a basis, or fundamental set of solutions, of all the solutions of $[\mathrm{H}]$ consists of n linearly independent solutions.
If $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ is a basis of all solutions of $[\mathrm{H}]$, then any other solution y of $[\mathrm{H}]$ can be expressed uniquely as $y=c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n}$.

