Section 4.3: Complex Roots

Monday, January 8, 2018 10:24 AM

suppose we have a 2nd order linear homogeneous DE that when we solve the auxiliary equation, we get solutions of the form

m= a ± bi where a and b are real

what do the solutions to the DE look like? we'll need the fact that

> ix L = Cos x + i sin x

nav, beceuse m = a ± bi, so ue have two distinct roots, then

$$y = C_{1} e^{m_{1}x} + C_{2} e^{m_{2}x}$$

$$= C_{1} e^{(a+bi)x} + C_{2} e^{(a-bi)x}$$

$$= C_{1} e^{ax+bix} + C_{2} e^{ax-bix}$$

$$= C_{1} e^{ax} e^{bix} + C_{2} e^{ax} e^{-bix}$$

$$= C_{1} e^{ax} (\cos bx + i \sin bx)$$

$$+ C_{2} e^{ax} (\cos (-bx)) + i \sin (-bx))$$

now recall that $\cos x$ is an even function, while $\sin x$ is odd, so $\cos(-x) = \cos x$ and $\sin(-x) = -\sin x$

$$y = C, e^{ax} (\cos bx + i\sin bx)$$

+ C, $e^{ax} (\cos bx - i\sin bx)$
= $(C, +C,)e^{ax} \cos bx + (C, -C,)ie^{ax} \sin bx$
New constant
A
= $Ae^{ax} \cos bx + Be^{ax} \sin bx$
= $e^{ax} (A \cos bx + B \sin bx)$