suppose we have a $2^{\text {nd }}$ order linear homogeneous $D E$ that when we solve the auxiliary equation, we get solutions of the form

$$
m=a \pm b i \quad \text { where } a \text { and } b \text { are real }
$$

what do the solutions to the $D E$ look like? weill need the fact that

$$
e^{i x}=\cos x+i \sin x
$$

now, because $m=a \pm b i$, so we have two distinct roots, then

$$
\begin{aligned}
y & =c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} \\
& =c_{1} e^{(a+b i) x}+c_{2} e^{(a-b i) x} \\
& =c_{1} e^{a x+b i x}+c_{2} e^{a x-b i x} \\
& =c_{1} e^{a x} e^{b i x}+c_{2} e^{a x} e^{-b i x} \\
& =c_{1} e^{a x}(\cos b x+i \sin b x) \\
& \left.+c_{2} e^{a x}(\cos (-b x))+i \sin (-b x)\right)
\end{aligned}
$$

now recall that $\cos x$ is an even function, while $\sin x$ is odd, so $\cos (-x)=\cos x$ and $\sin (-x)=-\sin x$

$$
\left.\left.\begin{array}{rl}
y & =c_{1} e^{a x}(\cos b x
\end{array}+i \sin b x\right) . c_{2} e^{a x}(\cos b x-i \sin b x)\right)
$$

