Explainer: Cauchy-Euler DES

Tuesday, February 18, 2020 9:19 AM

her

and

consider the DE

 $x^{2}y^{\prime\prime} + bxy^{\prime} + cy = g(x)$

Note that in standard form

 $y'' + \frac{b}{x}y' + \frac{c}{x}y = \frac{g(x)}{x^2}$

and our interval of solution cannot contain the point x=0. If we take our interval of solution to be x>0, and substitute

 $x = \mathcal{Q}^{\epsilon}$ $\ln x = \epsilon$ $\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx} = \frac{dy}{dt} \frac{dt}{dx} = \frac{dy}{dt} \cdot \frac{1}{x}$ $\frac{d^{2}y}{dx^{2}} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$ $= \frac{d}{dx} \left(\frac{dy}{dt} \cdot \frac{1}{x} \right)$ $= \frac{d}{dx} \left(\frac{dy}{dt} \cdot \frac{1}{x} \right)$ $= \frac{d}{dx} \left(\frac{dy}{dt} \right) \cdot \frac{1}{x} + \frac{dy}{dt} \cdot \left(\frac{-1}{x^{2}} \right)$ $= \frac{d}{dt} \left(\frac{dy}{dt} \right) \cdot \frac{dt}{dx} \cdot \frac{1}{x} - \frac{1}{x} \cdot \frac{dy}{dt}$ $= \frac{d^{2}y}{dt^{2}} \cdot \frac{1}{x} \cdot \frac{1}{x} - \frac{1}{x} \cdot \frac{dy}{dt}$ $= \frac{1}{x^{2}} \left(\frac{d^{2}y}{dt^{2}} - \frac{dy}{tt} \right)$

Links Page 1

substituting back into DE:

$$x^{2}y'' + bxy' + cy = g(x)$$

$$x^{2} \cdot \frac{1}{x^{2}} \left(\frac{d^{2}y}{dt^{2}} - \frac{dy}{dt} \right) + bx \cdot \frac{1}{x} \frac{dy}{dt} + cy = g(e^{\epsilon})$$

$$\frac{d^{2}y}{dt^{2}} + (b-1) \frac{dy}{dt} + cy = g(e^{\epsilon})$$

which is now a 2nd order linear DE with constant coefficients. Solving for complementary solution gives

aux eqn:
$$m^2 + (b-1)m + c = 0$$

 $m^2 - m + bm + c = 0$
 $m(m-1) + bm + c = 0$
solve to get m, and ma

Will give solutions to the homogeneous DE (i) 2 district real: m_1 and m_2 $= C_1 e^{m_1 t} + C_2 e^{m_2 t}$ $= C_1 e^{m_1 t \times t} + C_2 e^{m_2 t \times t}$ $= C_1 e^{m_1 \times t} + C_2 e^{m_2 t \times t}$ $= C_1 e^{m_1 \times t} + C_2 e^{m_2 t \times t}$ $= C_1 \times m_1 + C_2 e^{m_2 t \times t}$ $= C_1 \times m_1 + C_2 \times m_2$ $= C_1 \times m_1 + C_2 \times m_2$ $= C_1 \times m_1 + C_2 \times m_2$

=
$$(c_{1} + c_{2} \ln x) \ell^{m \ln x}$$

= $(c_{1} + c_{2} \ln x) x^{m}$

$$y_{c} = \ell^{\alpha t} (C, \cos \beta t + c_{s} \sin \beta t)$$

= $\ell^{\alpha \ln x} [C, \cos(\beta \ln x) + C_{s} \sin(\beta \ln x)]$
= $\chi^{m} [C, \cos(\beta \ln x) + c_{s} \sin(\beta \ln x)]$