Section 2.2 to 2.5: Choosing the Method

Wednesday, January 25, 2023 12:05 PM

excomple: identify the method(s) to solve the DE:
a)
$$\frac{dy}{dx} = x^2 + 3x^4y = 0$$

 $\frac{dy}{dx} = x^2 - 3x^2y$ $\frac{dy}{dx} + 3x^2y = x^4$ not Bernalli
 $\frac{dy}{dx} = x^2(1-3y)$ $\frac{dy}{dx} + 3x^2y = x^4$ not f (Ax+By+C)
 $\frac{dy}{dx} = x^4dx$ $= e^{S3x^2dx}$ $-ndt$ exact
 $\frac{dy}{1-3y} = x^4dx$ $= e^{S3x^2dx}$ $-ndt$ exact
 $\frac{dy}{1-3y} = x^4dx$ $+ (2x^2y + 4)dy = 0$
 $\frac{dx}{dx} = \frac{dy}{dx}$ $\frac{y^2}{dx}$ not homoseneas
 $\frac{dx}{dx} = \frac{dy}{dx}$ $\frac{y^2}{dx}$ not homoseneas
 x^4y has degree 0

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

stended form for linear first order: dy + P(x) y = F(x) dx + P(x) y = F(x)standard form for Bernoulli: $dy + P(x) y = Q(x) y^{n}$