Math 252 - Test 2: Version A

March 6, 2020
Instructor: Patricia Wrean

Name: Solution Set
Total: 25 points

1. (4 points) Find a second solution to the following DE, given that $y_{1}=\cos \left(x^{2}\right)$ is a solution. You may assume that $x>0$.

$$
\begin{aligned}
& x y^{\prime \prime}-y^{\prime}+4 x^{3} y=0 \\
& y^{\prime \prime}-\frac{1}{x} y^{\prime}+4 x^{2} y=0
\end{aligned}
$$

reduction of order: $\quad P(x)=-\frac{1}{x}$

$$
\begin{aligned}
& l^{-\int P(x) d x}=e^{\int \frac{1}{x} d x}=e^{\ln |x|}=x \\
& y_{2}=y_{1} \int \frac{e^{-\int P(x) d x}}{y_{1}^{2}} d x \\
& =\cos \left(x^{2}\right) \int \frac{x}{\cos ^{2}\left(x^{2}\right)} d x \\
& =\cos \left(x^{2}\right) \int x \sec ^{2}\left(x^{2}\right) d x \\
& =\cos \left(x^{2}\right) \cdot \frac{\tan \left(x^{2}\right)}{2} \\
& y_{2}=\frac{1}{2} \sin \left(x^{2}\right) \text { or just } \sin \left(x^{2}\right) \\
& \text { let } v=x^{2} \\
& d u=2 x d x \\
& \int x \sec ^{2}\left(x^{2}\right) d x \\
& =\frac{1}{2} \int \sec ^{2} u d u \\
& =\frac{1}{2} \tan u \\
& =\frac{1}{2} \tan x^{2}
\end{aligned}
$$

2. (4 points) Consider the following DE.

$$
x^{2} y^{\prime \prime}+5 x y^{\prime}+c y=0
$$

Solve this DE for the following values of c.
(a) $c=4$
(b) $c=5$
a)

$$
\begin{aligned}
x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y & =0 \\
m(m-1)+5 m+4 & =0 \\
m^{2}+4 m+4 & =0 \\
(m+2)^{2} & =0 \\
m & =-2,-2
\end{aligned}
$$

$$
y=C_{1} x^{-2}+C_{2} x^{-2} \ln x
$$

b)

$$
\begin{aligned}
x^{2} y^{\prime \prime}+5 x y^{\prime}+5 y & =0 \\
m(m-1)+5 m+5 & =0 \\
m^{2}+4 m+5 & =0 \\
m & =\frac{-4 \pm \sqrt{16-20}}{2} \\
& =\frac{-4 \pm 2 i}{2}=-2 \pm i \\
y & =x^{-2}\left[c_{1} \cos (\ln x)+c_{2} \sin (\ln x)\right]
\end{aligned}
$$

3. (6 points) Use the method of variation of parameters to solve the following DE.

Ic aux eqn:

$$
\begin{aligned}
y^{\prime \prime} & +y=\sec x \\
m^{2}+1 & =0 \\
m & = \pm i \\
y_{c} & =c_{1} \cos x+c_{2} \sin x
\end{aligned}
$$

Ye variation of parameters with

$$
\begin{aligned}
y_{1} & =\cos x \\
y_{2} & =\sin x \\
f(x) & =\sec x
\end{aligned}
$$

$$
\begin{aligned}
& w=\left|\begin{array}{cc}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=\cos ^{2} x+\sin ^{2} x=1 \\
& w_{1}=\left|\begin{array}{ll}
0 & y_{2} \\
f(x) & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
0 & \sin x \\
\sec x & \cos x
\end{array}\right|=-\sin x \sec x=-\tan x \\
& \omega_{2}=\left|\begin{array}{cc}
y_{1} & 0 \\
y_{1}^{\prime} & f(x)
\end{array}\right|=\left|\begin{array}{cc}
\cos x & 0 \\
-\sin x & \sec x
\end{array}\right|=\cos x \sec x=1 \\
& U_{1}=\int \frac{\omega_{1}}{w} d x=\int-\tan x d x=-\ln |\sec x| \\
& v_{2}=\int \frac{w_{2}}{w} d x=\int d x=x \\
& y_{e}=u_{1} y_{1}+u_{2} y_{2} \\
& =(\ln |\sec x|) \cos x+x \sin x \\
& y=y_{c}+y_{p}=C_{1} \cos x+c_{2} \sin x-\cos x \ln |\sec x|+x \sin x
\end{aligned}
$$

4. (6 points) Consider the following differential equations and graphs.
(a) State the form of the particular solution y_{p} for the following. Leave your answer with undetermined coefficients. Please note that the complementary solution for the homogeneous equation is $y_{c}=C_{1} e^{-2 x}+C_{2} e^{-4 x}$.
(i) $y^{\prime \prime}+6 y^{\prime}+8 y=5 e^{-2 x}$ \qquad
(ii) $y^{\prime \prime}+6 y^{\prime}+8 y=e^{x}+\cos (2 x)$
(iii) $y^{\prime \prime}+6 y^{\prime}+8 y=e^{x} \cos (2 x)$
$\frac{A e^{x}+B \cos 2 x+C \sin 2 x}{A e^{x} \cos 2 x+B e^{x} \sin 2 x}$
(b) For each of the solutions y_{p} above, indicate which plot or plots below are possible graphs of that y_{p}. No explanation is required. You may pick more than one.

5. (5 points) A mass of 0.5 kg is attached to a spring with constant $12.5 \mathrm{~N} / \mathrm{m}$. There is a damping force such that the damping constant is numerically equal to 5 . The mass is released from 0.3 m above equilibrium with a downward velocity of $0.6 \mathrm{~m} / \mathrm{s}$.
(a) Find the position $y(t)$ of the mass as a function of time.

$$
\begin{aligned}
& m \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+k y=0 \\
& 0.5 \frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+12.5 y=0
\end{aligned}
$$

aux en n:

$$
\begin{aligned}
& 0.5 n^{2}+5 n+12.5=0 \\
& n^{2}+10 n+25=0 \\
&(n+5)^{2}=0 \\
& n=-5,-5 \\
& y=\left(c_{1}+c_{2} t\right) e^{-5 t}
\end{aligned}
$$

initial conditions:
at $t=0, y=0.3$

$$
0.3=c_{1}
$$

$$
\frac{d y}{d t}=c_{2} e^{-5 t}-5\left(c_{1}+c_{2} t\right) e^{-5 t}
$$

 (positive
is up) (positive
is up)

$$
\text { at } t=0, \frac{d y}{a t}=-0.6
$$

$$
-0.6=c_{2}-5(0.3)
$$

$$
c_{2}=0.9
$$

$$
y=(0.3+0.9 t) e^{-5 t}
$$

(b) This motion is: (choose one)
(i) overdamped
(ii) critically damped
(iii) underdamped

