How to add vectors on the Ti-89

In general, 2D vectors may be expressed either as a magnitude and direction (mag $\angle \mathrm{dir}$) or as rectangular coordinates $[x, y]$. The easiest way to do this with your calculator is to use the Ti-89's ability to add complex numbers. Complex numbers, like 2 D vectors, can be written either in polar form, (r, θ), or component form, $\mathrm{a}+\mathrm{bi}$ (where a is the real part and b is the imaginary part).

How do you add vectors on the Ti-89?

Suppose you have 5 N at 53.1° and 6 N at -45° with respect to the same axis. To add them together, note that \angle is just $2^{\text {nd }}$ EE on the keypad, and type in

$$
(5 \angle 53.1)+(6 \angle-45)
$$

and hit enter. Depending on the mode your calculator is in, you'll either get

$$
(7.24886 \angle-1.93039)
$$

or

$$
\text { 7.24471-. } 244217 \cdot \mathbf{i}
$$

The first answer gives you the magnitude $(7.24886 \mathrm{~N})$ and direction $\left(-1.93^{\circ}\right.$ with respect to the axis you've chosen) of the resultant. The second answer gives you the x - and y components, 7.2447 N and -0.244217 N , respectively.

How do I change from one mode to another?

Because you're using the $\mathrm{Ti}-89$'s facility to add complex numbers, you change:
MODE \rightarrow Complex Format \rightarrow Polar gives you the (mag \angle dir) format, while
MODE \rightarrow Complex Format \rightarrow Real or Rectangular gives you the a+bi format, where a and b are the x - and y-components

What's the annoying part?

If you are adding 5.0 N at 53.1° west of north and 8.0 N due south, you have to use the same axis to reference your angles to. Then your answer uses the same axis as a reference.

For example, you could use true north as a reference. Then the above problem becomes

```
(5\angle-53.1) + (8\angle180)
```

with the result

$$
\text { (6.4005 } \angle-141.339 \text {) }
$$

and your final answer would be 6.4 N at 51.3° south of west.
Alternatively, you could use standard position:

$$
(5 \angle 143.1)+(8 \angle-90)
$$

to get

$$
(6.4005 \angle-128.661)
$$

but when you convert that to a compass heading, you'll notice that the result is still 6.4 N at 51.3° south of west.

So, the actual axis you use doesn't matter, but must be consistent and your answer must be in the same coordinate system as the original problem.

