STAT 157: Tchebysheff \& Empirical Rules

Consider the following data set:

$$
1,1,2,2,2,2,2,2,2,3,3,7,8,8,8,8,8,8,9,9
$$

The mean of this data set is 4.75 with standard deviation of 3.18 . It has the following frequency histogram.

Complete the table below by finding the percentage of measurements in the intervals $\bar{x} \pm s, \bar{x} \pm 2 s$ and $\bar{x} \pm 3 s$. Also, state the percentages you'd expect to find in each interval according to the Empirical Rule and Tchebysheff's Theorem.

interval	\# of points	\% of points	Empirical	Tcheby	Empirical works?	Tcheby works?	
$\bar{x} \pm s$	1.57 to 7.93	10	50Ω	~ 680	200	no	yes
$\bar{x} \pm 2 s$	-1.61 to 11.11	all	1000	~ 950	2750	sort of	yes
$\bar{x} \pm 3 s$	-4.79 to 14.29	all	100Ω	~ 99.70	$\geq 89 \Omega$	yes	yes

Should the actual percentages agree with the Empirical Rule? With Tchebysheff?

$$
\begin{aligned}
& \text { Empirical: NO, the date is not mound-shaped. } \\
& \text { Tcheby: Yes, it always walks. }
\end{aligned}
$$

Consider another data set in which x is the value of the data point and f is the frequency with which that value occurs.

The mean of this data set is 6.5 with standard deviation 2.0. It has the following histogram.
$\bar{x}=6.5$ $s=2.0$

Complete the table below.

interval	\# of points	\% of points	Empirical	Tcheby	Empirical works?	Tcheby works?	
$\bar{x} \pm s$	4.5 to 8.5	28	66.70	~ 680	2000	yes	yes
$\bar{x} \pm 2 s$	2.5 to 10.5	40	95.2Ω	~ 950	≥ 750	yes	yes
$\bar{x} \pm 3 s$	0.5 to 12.5	911	100Ω	~ 99.70	≥ 890	yes	yes

Should the actual percentages agree with the Empirical Rule? With Tchebysheff?
Empirical: Yes, because data is mimodal and symmetrical Tcheby: Yes, it always woks.

