Section 2.1: Measures of centre:
Thursday, October 24, 2019 10:13 AM Mean and Median
numerical measure - another way to summarize a date set
(graphs \rightarrow visual summary)

- particularly useful when comparing data sets whose values are very similar
numerical measures are quantities (numbers) that describe a date set
\rightarrow called parameters for populations
called statistics for samples
weill look at three types of numerical measures:
- measures of centre
- Where most of the date points are located
- measures of variability
- is there a lot of spread in the date?
- measures of relative standing
- where is this data point located in comparison to all the others
measures of centre:
mean (average) - add all of the values of the data points together and divide by the number of points
population mean:

Greek letter "mu"
where x_{i} is the $i^{\text {th }}$ measurement and n is the site of the population
sample mean:

$$
\begin{gathered}
\bar{x} \\
\text { "x-bar" }
\end{gathered}
$$

one problem: mean is greatly affected
by outliers
median - if you write your date in an ordered list, it's the middle value
\rightarrow if you have an even number of points, it's the average of the two middle points
example: starting salary of ICS graduates* * totally made-up data
\$35,000
\$ 45,000
\$37,000
\# 60,000
\$ 2, 400, 000
find the mean and median of this date set

$$
\text { answer: } \quad \begin{array}{ll}
& \text { mean }= \\
& \text { median }=\$ 515,400 \\
& \$ 45,000
\end{array}
$$

the mean value can be misleading because the outlier has dragged the mean in that direction
for the median, if there are lots of date points, how do you determine the position of the middle value?

$$
\text { position }=\frac{1}{2}(n+1)
$$

for 75 points, the median is the $38^{\text {th }}$ point for 76 points, the median is the $\underbrace{38.5^{\text {th }}}_{7}$ point

The average between the $38^{\text {th }}$ and $39^{\text {th }}$ points
mean and median for skewed distributions:
mean and median

note: where is the median located on an
asymmetrical graph?

these two areas are equal
where is the mean located?

balance point
weighted average:
suppose you have the following date set:

$$
1,1,1,1,1,2,2,3,3,3,3
$$

you could summarize this date in a frequency table

x	f
1	5
2	2
3	4

\uparrow	个 number of
values	nines this value
of x	occurs in the date set

calculating the mean:
fer a sample, $\bar{x}=\frac{\sum x_{i} \cdot f_{i}}{n}=\frac{\sum x_{i}-f_{i}}{\sum f_{i}}$
a rote on rounding means:

- you generally can report the mean of a set of measurements to at least one more decimal place than the measurements themselves
$25,37,42, \ldots \quad \rightarrow$ can report the mean as $32 .{ }^{\circ}$
one more decimal place
(to do it properly, need to calculate the standard deviation first)

