Section 2.3: Tchebysheff's Theorem and the Empirical Rule or chebysher

Tchebysheff's theorem: works for all distributions/ date sets
(symmetrical or skewed, unimodal or multimadal)

- for any set of measurements,
at least $\left(1-\frac{1}{k^{2}}\right)$ of the measurements fall within k standard deviations of the mean for $k \geqslant 1$
example:

look at the interval from 30 to 70
30 is two standard deviations belau the mean, and 70 is two standard deviations above
so $\quad k=2$

$$
1-\frac{1}{k^{2}}=1-\frac{1}{2^{2}}=\frac{3}{4} \text { or } 75^{\circ}
$$

Tcheby says at least 7500 of the measurements fall between 30 and 70

What abate the number of measurements between 20 and 80?

so $1-\frac{1}{k^{2}}=1-\frac{1}{3^{2}}=\frac{8}{9}$ or $88 . \overline{8}$ ढ
and at least 89 d le of the measurements fall within a 20 to 80 the interval

k	$1-1 / k^{2}$
1	0
1.5	$5 / 7$
2	$3 / 4$
2.5	$21 / 25$
3	$8 / 9$

$$
\begin{array}{rlrl}
\text { so } & \geq 00 \text { lie within } & \bar{x} \pm 15 \\
& \geq 55 . \overline{5} 0 & & \\
& \geq 750 & & \bar{x} \pm 1.5 \mathrm{~s} \\
& \geq 8400 & & \bar{x} \pm 2 \mathrm{~s} \\
& \geq 88 . \overline{80} & & \\
& & & \bar{x} \pm 2.5 \mathrm{~s} \\
& & & \bar{s}
\end{array}
$$

* 200r may seem like a totally useless statement, but what it says is that it is possible to have no date within one std der of the mean

- for unimodal and roughly symmetrical
approximately 68 or of the measurements fall within $\bar{x} \pm 15$ 95%

$$
\bar{x} \pm 2 s
$$ 99.78

$$
\bar{x} \pm 3 s
$$

