Section 2.3: Tcheby sheff's Theorem

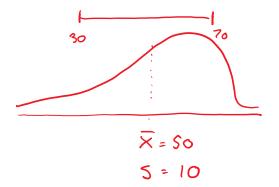
Tuesday, October 29, 2019 10:54 AM

and the Empirical Rule

or Chebyshev

Tchebysheff's theorem: works for all distributions/

(symmetrical a skewed, unimodal a multimodal)

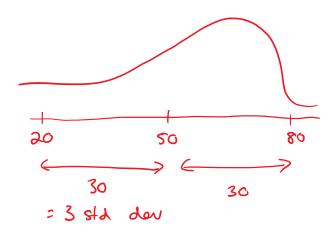

- for any set of measurements,

at least (1 - 1) of the measurements

fall within k standard deviations of the

mean for k > 1

example:

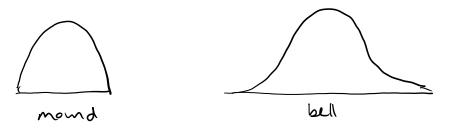

look at the interval from 30 to 70

30 is two standard deviations below the mean, and 70 is two standard deviations above

$$1 - \frac{1}{k^2} = 1 - \frac{1}{2^2} = \frac{3}{4} = 75\%$$

Tcheby says at least 75% of the measurements fell between 30 and 70

what about the number of measurements between 20 and 80?



50
$$1 - \frac{1}{K^2} = \frac{1 - \frac{1}{3^2}}{3^2} = \frac{8}{9}$$
 or $88.\overline{8}$ %

and at least 89% of the measurements
full within , 20 to 80
the interval

k	1-1/k2			
1	0	50 ≥ 000 *	lie wohin	X ± 15
1.5	5/7	≥ 55,5 °n		X ± 1.5 s
2	3/4	≥ 75 °n		X ± 2.5 s
2.5	01/25	≥ 84 °n		X ± 2.5 s
3	8/9	≥ 88.8°°		X ± 3 s

The Empirical Rule: only works for "mound-shaped" or "bell-shaped" curves

- for unmodal and roughly symmetrical

approximately 68% of the measurements fall within
$$\overline{x} \pm 1s$$
 $\overline{x} \pm 3s$ $\overline{x} \pm 3s$