Section 4.3: Discrete Random Variables
a variable x is a random variable if the value it assumes in the at come of an experiment is a chance or random event
examples: result of a coin flip
(note: coin does not have to be fail)
the sum of two dice when rolled
the first card dealt in a cord game
discrete random variable:
quantitative (has a numerical salve)
discrete - can only take on certain values (a 6-sided die can roll a value of 3 ar 4 bat not 3.75 or π)
probability distribution:
example: when you coll a fair 6-sided die, what is the probability of each roll?

roll	probability
1	$1 / 6$
2	$1 / 6$
3	$1 / 6$
4	$1 / 6$
5	$1 / 6$
6	$1 / 6$

example: what is the probability of each at come for rolling an unfair six-sided die if the probability of rolling a $2,3,4$, or 5 is still $1 / 6$, but the probability of rolling a 1 is zero?
table
graph

probability distribution for a discrete random variable is a formula, graph, or table that gives the possible
atcomes of x and their associated probabilities $\rho(x)$
note: the sum of the probabilities must equal are

$$
\sum \rho(x)=1
$$

example: complete the following probability distribution

x	$\rho(x)$
0	$1 / 10$
1	$3 / 10$

\leftarrow fill in the missing value, which is

$$
\frac{6}{10}=\frac{3}{5}
$$

experiment: rolling two fair 4-sided dice
result of single rolls

coll	tally
1	11111111111
2	11111
3	11111111
4	111111111111

result for the sum

\sin		tally
2	1	
3	1	
4	1111	
5	11111	
6	111	
7	111	
8	11	

but what does this look like in theory?
sample space:

how many ways can you roll a sum of 2? 1 5 ?
how many outcomes in total in sample space? 16

sum	probability
2	$1 / 16$
3	$2 / 16=1 / 8$
4	$3 / 16$
5	$4 / 16=1 / 4$
6	$3 / 16$
7	$2 / 16=1 / 8$
8	$1 / 16$

$$
\text { sum }=1 \quad 1
$$

