Chapter 6: Confidence Intervals

Section 6.1: Estimating with Confidence

Statistical inference: making predictions (estimates) about populations based on samples
example: Globe and Mail newspaper polls 1000 canadians, and based on this poll, says
"680 of Canadians want ..."
\uparrow
did they measure all Gradians? No! this is an estrinete, based on their simple
note: Statistical inference also mokes decisions abut populations based on samples, but that's beyond the scape of this course
precision $\sqrt{ }$ s. accuracy
precise and

accurate but not pectise
accurate

neither precise nor accurate

$$
x \quad x
$$

how to you get good accuracy?

- yo make sure that as much as possible that your sample is representative
how do you get good precision?
- good measuring instruments and a large sample size
for example: you measure a scruple of fine -yerold Daskas fir trees and find that the mean diameter 1385 cm .

What can you say about the entire population of five-year - old Douglas fir trees?
answer: if your sample is representative (which were going to assume from now on), you can estimate that the mean diameter of all fire-yer-old

Douglas fir trees is 85 cm
but what does "abate 85 an" mean?
$85 \mathrm{~cm} \pm 1 \mathrm{~cm}$? from 84 to 86 cm
$85 \mathrm{~cm} \pm 5 \mathrm{~cm}$?
from 80 to 90 cm
this is an interval
and wire going to learn in the next section how to calculate it
but is it not also true that occasionally the sample may contain an attlier? or have more individuals above the mean rather than below it?
occasionally, your sample will, due to randan variation, nat predict the population mean accurately
how do we handle this? we say something
like:
"Based on our sample, we have determined that the mean diameter of five-year-old Darglas fir trees 13 between 80 and 90 cm , with 950 confidence"

