STAT 157 - Practice Test 3

Winter 2020
Name: Solution Set
Instructor: Patricia Wrean
Total: 15 points

1. (6 points) The mean price for a barrel of crude oil in July 2014 was $\$ 105$. Let's assume that the price is normally distributed with a standard deviation of $\$ 8$.
(a) Find the probability that the price for a barrel of crude oil is above $\$ 100$.
(2)
want
$x>100$

(b) Find the probability that the price for a barrel of crude oil is between $\$ 90$ and $\$ 100$.

$$
\begin{aligned}
& \text { some mean, std der } \\
& \text { but want } 90<x<100
\end{aligned}
$$

2

(c) 99.5% of the time, the price is above a certain amount. Calculate that amount.

$$
\begin{aligned}
\text { are } & =0.995 \\
x & =84.393 \\
& =\$ 84.39
\end{aligned}
$$

(2)
2. (6 points) A random sample of 60 cans of Coke had an average volume of 355.3 mL and a standard deviation of 2.5 mL .
(a) Find a 95% condence interval for the average volume among all cans of Coke.

$$
\text { (4) }=355.3 \pm 0.632587
$$

(b) Would a 99% condence interval be wider or narrower than the 95% condence interval in part (a)? Explain your reasoning briefly.
wider, because $z=2.576$ (highervele)

$$
\text { for } 99 \% \text { CI }
$$

$$
\begin{aligned}
& \begin{array}{r}
\mu=\bar{x} \pm \frac{2 \sigma}{\sqrt{n}} \quad \text { for large samples, okay to } \\
\text { swap s fo } \sigma
\end{array} \\
& \text { for } 9506, z=1.96 \\
& \mu=355.3 \pm \frac{1.96(2.5)}{\sqrt{60}} \\
& C I=354.7 \mathrm{~mL} \text { to } 355.9 \mathrm{~mL}
\end{aligned}
$$

3. (3 points) Consider the following table

x	$p(x)$
-5	0.15
-2	0.2
1	0.4
6	0.25

(a) Is the variable x discrete or continuous?

$$
\begin{aligned}
& \text { discrete, because there are only } \\
& 4 \text { possible wa hes of } x
\end{aligned}
$$

(b) Is this table a valid probability distribution? Explain your reasoning briefly.
(2)

$$
\text { yes, because } \begin{aligned}
\sum \rho(x) & =0.15+0.2+0.4+0.25 \\
& =1
\end{aligned}
$$

