Section 1.4: Cont $^{\prime}$ d
easiest measure of variability to calculate
range - the different between the max and minimum values
good port - easy to calculate bad part - almost completely useless
\rightarrow heavily influenced by outliers
\rightarrow only depends on the values of two date points at of the entire set
the annoying measures to calculate:
Variance:
 Sample data
consider some dak point x_{i} on the abare distribution
now far is x_{i} away from the mean? $\left(x_{i}-\bar{x}\right)$
note: if y a sum $\sum\left(x_{i}-\bar{x}\right)$, ya get zero
but if yaw sum $\sum\left(x_{i}-\bar{x}\right)^{2}$, so all terms are non-negative,
the result is a measure of has far away from the mean the points are
population variance:

Greek letter
"sigma"
$N=$ size or population
$\nu=$ population mean
population standard deviation

$$
\sigma=\sqrt{\sigma^{2}}
$$

sample variance

$$
s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1} \quad n=\text { sample size }
$$

sample standard deviation:

$$
s=\sqrt{s^{2}}
$$

note: the units of σ / s are the some as for μ / \bar{x} so if μ is the average of same lengths meas red in metres, then σ is also in matres
a common convention (at least in physics), is to round σ / s to one sisfirs, then rand μ / \bar{x} to the same precision
calculator sags $\quad \mu=58.543287 \ldots$

$$
\sigma=0.71285 \ldots
$$

acceptable to say $\mu=58.6$

$$
\sigma=0.7
$$

