Section 1.4: conta

Thursday, January 11, 2018 12:25 PM

easiest measure of variability to calculate

range - the different between the max and minimum values

good part - easy to calculate

bad part - almost completely useless

- Theavily influenced by outliers

-> only depends on the values of two date points out of the entire set

the annoying measures to calable:

Variance:

sample data

consider some deterpoint Xi on the above distribution

now for is x_i away from the mean? $(x_i - \bar{x})$

nok: if you sum $\leq (\kappa_i - \bar{\kappa})$, you get zero

but if you sum $\sum (x_i - \overline{x})^2$, so all terms are non-negative,

the result is a measure of how for away from the mean the points are

population variance:

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{\sum (x_{i} - y_{i})^{\alpha}}{\sum (x_{i} - y_{i})^{\alpha}}$$

Greek letter "signe" (loweruse) N= size of population N= population meen

population standard deviation

sample variance

$$S^{2} = \underbrace{\sum (x_{i} - \overline{x})^{2}}_{N-1}$$

n = sample size

sample standard deviation:

S = 152

note: the units of 6/s are the same as for μ/\bar{x}

50 if μ is the average of some lengths measured in metres, then 6 is also in metres

a common convention (at least in physics), is to round σ/s to one sight, then round μ/\bar{x} to the same precision

calculator segs $\mu = 58.593287...$

acceptable to say $\mu = 58.6$ $\sigma = 0.7$