Tchebysheff's theorem - works for all distributions

(Symmetrical or skewed unimodal or multimodal)

- for any set of measurements, at least $(1 - \frac{1}{k^2})$ of the measurements will lie within k standard deviations of the mean for $k \ge 1$

70 6 -1		\.\$\$		
k	1-1/2	total	yseless y stetement	
1 1.5 a 2.5 3	0 5/q 3/4 21/25 8/q	50 = 02 = 55.52 = 752 = 842 = 88.82	1.e wikin	N± 1.56 N± 2.56 N± 36

the Empirical Fule: only works for "mound-shaped"
date sets

mound-shaped: unimodal and roughly symmetrical

approximately 68% of measurements fell within $\mu \pm 10^{\circ}$ 95% $\mu \pm 30^{\circ}$ $\mu \pm 30^{\circ}$ $\mu \pm 30^{\circ}$ $\mu \pm 35^{\circ}$ for samples