Section 3.1: Discrete Randan variables
a variable x is a random variable if the value it assumes in the attcome of an experiment is a chance or random event
discrete random variable \rightarrow quantitative
behaves like integer, not real numbers
probability distribution for a discrete randan variable is a formula, graph, or table that gives the possible values of x and their associated probabilities $\rho(x)$
example: sum of two fair 4-sided dice

$x=\sin$	$\rho(x)$
2	$1 / 16$
3	$2 / 16=1 / 8$
4	$3 / 16$
5	$4 / 16=1 / 4$
6	$3 / 16$
7	$2 / 16=1 / 8$
8	$1 / 16$

note: the values of x must be mutually exclusive events
also:

$$
\begin{aligned}
& 0 \leq p(x) \leq 1 \\
& \sum p(x)=1
\end{aligned}
$$

population mean - also known as the "expected value" or the "expectation value"
mean $\mu=E(x)=\sum x p(x)$
variance $\sigma^{2}=E\left[(x-\mu)^{2}\right]$

$$
=\sum(x-\mu)^{2} \rho(x)
$$

formal definition (annoy'y to calculate)

$$
=\sum x^{2} \rho(x)-\mu^{2}
$$

Calculation formula (USE THIS!)

