Section 3.3: The Poisson Probability
Tuesday, January 30, 2018 3:22 PM Distribution

Poisson - good model fo data that represent the number of occurrences of a specified event in a given unit of time or space
examples:

- number of cor accidents at a particular intersection during a given period of time
- number of people stendis at a certain street corner at a given time
then $x=$ number of events occurring in a period of tine or space
note: x does not hare a maximum value \rightarrow unbounded
so $N=$ average number of such events expected to occur
ana

$$
P(x=k)=\frac{\mu^{k} e^{-\mu}}{k!} \text { where } k=0,1,2,3, \ldots
$$

mean: N
sta der: $\sigma=\sqrt{\mu}$
example: For a porticulo cement mix, the average number of sacks per concrete specimen is 2.5. Assume that this number of racks obeys a poisson distribution.
a) find the mean and standee deviation
b) What's the probability of havily at least one crack in a randomly chosen specimen?
a)

$$
\begin{aligned}
& N=2.5 \\
& \sigma=\sqrt{2.5}=1.58 \approx 1.6
\end{aligned}
$$

b) $\quad P(x \geq 1)=1-P(x: 0)$

$$
\begin{aligned}
P(x=k) & =\frac{N^{k} e^{-N}}{k!} \\
P(x=0) & =\frac{(2.5)^{0} e^{-2.5}}{0!} \\
& =0.082085
\end{aligned}
$$

$$
\begin{aligned}
\rho(x \geq 1) & =1-0.082085 \\
& =0.917915 \\
& \approx 920
\end{aligned}
$$

note: $\mu \pm 26=$ the interval from -0.7 to 5.7 and if you sum $\sum_{x=0}^{5} \rho(x)$, you get 0.958
example: In nuclear physics, the number of neutrons defected in a porticulor defect r over a certain time period is a poisson process. What average number of events shall you mersure so that you uncertainty (standard deviation) is 106 of the mean?

$$
\begin{aligned}
\sigma & =0.01 \mu \\
\sqrt{\mu} & =0.01 \mu \\
100 & =\sqrt{\mu} \\
100^{2} & =\mu \\
\mu & =10000
\end{aligned}
$$

