Section 6.3. Estimatiy the Difference
monday, March 5, 2018 8:46 AM Between Two Populations
-important question - are discrepancies in the results for two different samples significiat?

- comparison of materials furnished by different suppliers
- comporisa of test scores for students in different sections of programs
- section 1 gat 78% on Quire
- section 2 gat 65 or
estimating the difference between two population mesas
from Giles' handart:

$$
=\bar{x}_{1}-\bar{x}_{2} \pm z_{\alpha / 2} S E
$$

where $S E=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}$
note: if σ_{1} and σ_{2} are unknown, but n, and n_{2} are large (≥ 30), can approximate with S_{1} and S_{2}, respectively
if the two sampled popuctans are lech normally distributed, then the difference $\left(\overline{x_{1}}-\bar{x}_{2}\right)$ is also normally distributed, regardless of the sample site.
if the two sampled populations are not normally distributed, then $\left(\bar{x},-\bar{x}_{2}\right)$ is approximately normally distributed if n_{1} and n_{2} are both greater or equal to $3 c$ (central Limit Theorem)
example: Police records for two different districts record the men n number of emergency calls per shift.
simple size
mean
S^{2}

variance | region 1 | region 2 |
| :---: | :---: |
| 2.4 | 100 |
| 1.44 | 3.1 |
| | |

Find a 90 or confidence interval for the difference in mean numbers of emergency calls per shift and interpret yer result.

900 cafidence

$$
\begin{aligned}
\mu_{1}-\mu_{2} & =\bar{x}_{1}-\bar{x}_{2} \pm 2 \alpha / 2 \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} \\
& =(2.4-3.1) \pm 1.645 \sqrt{\frac{1.44}{100}+\frac{0.69}{100}} \\
& =-0.7 \pm 0.332 \\
& =-0.7 \pm 0.3
\end{aligned}
$$

with 900 confidence, the difference is -1.0 to -0.9 calls per shift
nose: zero is nat included in the interval
in the above example it is likely that there 13 a significant difference between the two regions at the 90% level
note: if zero 13 included, it is likely that there is no significant difference between the two samples

