Section 6.4: cont id:
example: Camosin warts to know the difference (i fang) between rates of smoking for students on the two different campuses. Assume that equal numbers of students will be surveyed on each campus. The sampling error in the difference between the two propations is required to be no larger than $\pm 3 \Omega$. How large a sample site is required if
a) the rate of smoking for young adults in Canada is known to be 28Ω
b) If the rate of smoking is initially unknown
a) want MOE $\leq B$ where $B=0.03$

$$
\begin{gathered}
z_{\alpha / 2} S_{E} \leq \beta \\
z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{\rho}_{2} \hat{q}_{2}}{n_{2}}} \leq B \\
n_{1}=n_{2}=n \text { and assume } \hat{p}_{1} \approx \hat{p}_{2} \approx \hat{\rho} \\
z_{\alpha / 2} \sqrt{\frac{\partial \hat{p} \hat{q}}{n}} \leq \beta \\
n \geq 2 \hat{p} \hat{q}\left(\frac{z_{\alpha / 2}}{\beta}\right)^{2}
\end{gathered}
$$

$$
\begin{aligned}
& (\bar{B}) \\
\geq & 2(0.28)(0.72)\left(\frac{1.96}{0.03}\right)^{2} \\
\geq & 1721
\end{aligned}
$$

b) will shill have

$$
n \geq 2 \hat{p} \hat{q}\left(\frac{Z \alpha / 2}{3}\right)^{2}
$$

but we have no info on $\hat{\rho}$ and \hat{q}
brute force technique: try $\hat{\rho}=0.5$

$$
\hat{p}=0.95^{\circ}
$$

and look for worst case scenario

more sophisticated approach:
wand to maximize $\hat{\rho} \hat{q}$
Which equals $\underbrace{\hat{\rho}(1-\hat{\rho})}_{\text {posable }}$

X01 Lectures Page 2

so stick with $\hat{\rho}=0.5$ and plan on a sapele 5.6 of 2134

$$
2150
$$

